forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBucketization.cu
159 lines (136 loc) · 5.85 KB
/
Bucketization.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/native/BucketizationUtils.h>
#include <THC/THC.h>
namespace at {
namespace native {
// Implement a TF like searchsorted and a bucketize function running on cuda
// See details in ATen/nativate/Bucketization.cpp
namespace {
template<typename input_t>
__device__ int64_t lower_bound(const input_t *data_ss, int64_t start, int64_t end, input_t val) {
while (start < end) {
int64_t mid = start + ((end - start) >> 1);
if (!(data_ss[mid] >= val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
template<typename input_t>
__device__ int64_t upper_bound(const input_t *data_ss, int64_t start, int64_t end, input_t val) {
while (start < end) {
int64_t mid = start + ((end - start) >> 1);
if (!(data_ss[mid] > val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
template<typename input_t, typename output_t>
__global__ void searchsorted_cuda_kernel(
output_t *data_out,
const input_t *data_in,
const input_t *data_bd,
int64_t idim_in,
int64_t idim_bd,
int64_t numel_in,
bool right,
bool is_1d_boundaries) {
for (int64_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < numel_in; tid += blockDim.x * gridDim.x) {
// If boundaries tensor is 1d, we always search the entire boundary tensor
int64_t start_bd = is_1d_boundaries ? 0 : tid / idim_in * idim_bd;
int64_t end_bd = start_bd + idim_bd;
int64_t pos = !right ?
lower_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid]) - start_bd :
upper_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid]) - start_bd;
// type conversion might happen here
data_out[tid] = pos;
}
}
template<typename input_t, typename output_t>
void searchsorted_cuda_contiguous(Tensor& result, const Tensor& input, const Tensor& boundaries, const bool& right) {
int64_t numel_in = input.numel();
bool is_scalar_input = input.dim() == 0 && numel_in == 1;
// inner most dim size of input and boundaries
int64_t idim_in = is_scalar_input ? 1 : input.sizes().back();
int64_t idim_bd = boundaries.sizes().back();
const input_t *data_in = input.data_ptr<input_t>();
const input_t *data_bd = boundaries.data_ptr<input_t>();
output_t *data_out = result.data_ptr<output_t>();
int64_t maxThread = at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock;
int64_t maxGrid = 1024;
dim3 block = dim3(std::min(maxThread, numel_in));
dim3 grid = dim3(std::min(maxGrid, cuda::ATenCeilDiv<int64_t>(numel_in, block.x)));
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
searchsorted_cuda_kernel<<<grid, block, 0, stream>>>(
data_out, data_in, data_bd, idim_in, idim_bd, numel_in, right, boundaries.dim() == 1);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void dispatch(Tensor& result, const Tensor& input, const Tensor& boundaries, bool out_int32, bool right) {
if (!out_int32) {
AT_DISPATCH_ALL_TYPES(input.scalar_type(), "searchsorted_out_cuda", [&] {
searchsorted_cuda_contiguous<scalar_t, int64_t>(result, input, boundaries, right);
});
}
else {
AT_DISPATCH_ALL_TYPES(input.scalar_type(), "searchsorted_out_cuda", [&] {
searchsorted_cuda_contiguous<scalar_t, int>(result, input, boundaries, right);
});
}
}
}
Tensor& searchsorted_out_cuda(Tensor& result, const Tensor& sorted_sequence, const Tensor& self, bool out_int32, bool right) {
searchsorted_pre_check(sorted_sequence, self, result, out_int32);
if (result.numel() == 0) {
result.resize_(self.sizes());
}
if (self.numel() == 0) {
return result;
}
if (sorted_sequence.is_contiguous() && self.is_contiguous() && sorted_sequence.dtype() == self.dtype()) {
dispatch(result, self, sorted_sequence, out_int32, right);
return result;
}
Tensor trimmed_input;
Tensor trimmed_boundaries;
searchsorted_maybe_trim_input_tensors(trimmed_input, trimmed_boundaries, self, sorted_sequence);
const Tensor& final_input = trimmed_input.defined() ? trimmed_input : self;
const Tensor& final_boundaries = trimmed_boundaries.defined() ? trimmed_boundaries : sorted_sequence;
dispatch(result, final_input, final_boundaries, out_int32, right);
return result;
}
Tensor searchsorted_cuda(const Tensor& sorted_sequence, const Tensor& self, bool out_int32, bool right) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
searchsorted_out_cuda(result, sorted_sequence, self, out_int32, right);
return result;
}
Tensor searchsorted_cuda(const Tensor& sorted_sequence, Scalar self, bool out_int32, bool right) {
return searchsorted_cuda(sorted_sequence, searchsorted_scalar_tensor(self, sorted_sequence.device()), out_int32, right);
}
Tensor& bucketize_out_cuda(Tensor& result, const Tensor& self, const Tensor& boundaries, bool out_int32, bool right) {
TORCH_CHECK(boundaries.dim() == 1, "boundaries tensor must be 1 dimension, but got dim(", boundaries.dim(), ")");
searchsorted_out_cuda(result, boundaries, self, out_int32, right);
return result;
}
Tensor bucketize_cuda(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
bucketize_out_cuda(result, self, boundaries, out_int32, right);
return result;
}
Tensor bucketize_cuda(Scalar self, const Tensor& boundaries, bool out_int32, bool right) {
return bucketize_cuda(searchsorted_scalar_tensor(self, boundaries.device()), boundaries, out_int32, right);
}
}} // namespace at::native