forked from google-research/kubric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
244 lines (205 loc) · 8.1 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2022 The Kubric Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pathlib
import logging
import numpy as np
import os
import kubric as kb
from kubric.renderer import Blender as KubricRenderer
from kubric import randomness
import bpy
import os.path as osp
from glob import glob
import mathutils
from kubric import core
from kubric.core import color
# --- Define lights for specular rendering
def get_lights(
light_jitter: float = 1.0,
rng: np.random.RandomState = randomness.default_rng()):
""" Create lights that match the setup from the CLEVR dataset."""
sun = core.DirectionalLight(name="sun",
color=color.Color.from_name("white"), shadow_softness=0.2,
intensity=0.85, position=(11.6608, -6.62799, 25.8232))
lamp_back = core.RectAreaLight(name="lamp_back",
color=color.Color.from_name("white"), intensity=100.,
position=(-1.1685, 2.64602, 5.81574))
lamp_key = core.RectAreaLight(name="lamp_key",
color=color.Color.from_hexint(0xffedd0), intensity=200,
width=0.5, height=0.5, position=(6.44671, -2.90517, 4.2584))
lamp_fill = core.RectAreaLight(name="lamp_fill",
color=color.Color.from_hexint(0xc2d0ff), intensity=60,
width=0.5, height=0.5, position=(-4.67112, -4.0136, 3.01122))
lights = [sun, lamp_back, lamp_key, lamp_fill]
# jitter lights
for light in lights:
light.position = light.position + rng.rand(3) * light_jitter
light.look_at((0, 0, 0))
return lights
# --- CLI arguments (and modified defaults)
parser = kb.ArgumentParser()
parser.set_defaults(
seed=50000,
frame_start=0,
frame_end=23,
resolution=(256,256))
parser.add_argument('--rubber',
action='store_true',
help='use rubber metal')
FLAGS = parser.parse_args()
# --- Common setups
kb.utils.setup_logging(FLAGS.logging_level)
kb.utils.log_my_flags(FLAGS)
job_dir = kb.as_path(FLAGS.job_dir)
rng = np.random.RandomState(FLAGS.seed)
scene = kb.Scene.from_flags(FLAGS)
# --- Load the cameras
local_path = pathlib.Path(__file__).parent.resolve()
data = np.load(local_path / "cameras.npz")
# --- Add a renderer
renderer = KubricRenderer(scene,
use_denoising=True,
adaptive_sampling=False,
background_transparency=True)
# --- Add Klevr-like lights to the scene
scene += get_lights(rng=rng)
scene.ambient_illumination = kb.Color(0.05, 0.05, 0.05)
# --- Fetch shapenet
source_path = os.getenv("SHAPENET_GCP_BUCKET", "gs://kubric-public/assets/ShapeNetCore.v2.json")
asset_source = kb.AssetSource.from_manifest(source_path)
# --- Fetch a random asset from shapenet
ids = list(asset_source._assets.keys())
asset_id = ids[FLAGS.seed % len(ids)]
obj = asset_source.create(asset_id=asset_id)
logging.info(f"selected '{asset_id}'")
# --- make object flat on X/Y and not penetrate floor
obj.quaternion = kb.Quaternion(axis=[1,0,0], degrees=90)
# --- Add floor (~infinitely large sphere)
scene += kb.Sphere(name="floor", scale=1000, position=(0, 0, +1000 + obj.aabbox[0][2]), background=True, static=True)
obj.metadata = {
"asset_id": obj.asset_id,
"category": asset_source._assets[asset_id]["metadata"]["category"]
# TODO(klausg): check this matches in the new API
# "category": asset_source.db[asset_source.db["id"] == obj.asset_id].iloc[0]["category_name"],
}
scene.add(obj)
object = bpy.context.scene.objects[-1]
# --- Renormalize objects
v_min = []
v_max = []
for i in range(3):
v_min.append(min([vertex.co[i] for vertex in object.data.vertices]))
v_max.append(max([vertex.co[i] for vertex in object.data.vertices]))
v_min = mathutils.Vector(v_min)
v_max = mathutils.Vector(v_max)
scale = max(v_max - v_min)
v_shift = (v_max - v_min) / 2 / scale
#
for v in object.data.vertices:
v.co -= v_min
v.co /= scale
v.co -= v_shift
v.co *= 1.0
scene.camera = kb.PerspectiveCamera()
azimuths = np.linspace(0, 360., FLAGS.frame_end - FLAGS.frame_start + 2)
counter = 0
for frame in range(FLAGS.frame_start, FLAGS.frame_end + 1):
# scene.camera.position = (1, 1, 1) #< frozen camera
mat = data['world_mat_inv_{}'.format(frame)]
scene.camera.position = mat[:3, -1][[0, 2, 1]]
scene.camera.look_at((0, 0, 0))
scene.camera.keyframe_insert("position", frame)
scene.camera.keyframe_insert("quaternion", frame)
counter = counter + 1
print("counter: ", counter)
print("azimuth shape: ", azimuths.shape)
def add_material(name, obj, **properties):
"""
Create a new material and assign it to the active object. "name" should be the
name of a material that has been previously loaded using load_materials.
"""
# Figure out how many materials are already in the scene
mat_count = len(bpy.data.materials)
# Create a new material; it is not attached to anything and
# it will be called "Material"
bpy.ops.material.new()
# Get a reference to the material we just created and rename it;
# then the next time we make a new material it will still be called
# "Material" and we will still be able to look it up by name
mat = bpy.data.materials['Material']
mat.name = 'Material_%d' % mat_count
mat.use_nodes = True
for i in range(len(obj.material_slots)):
bpy.ops.object.material_slot_remove({'object': obj})
# if obj.data.materials:
# obj.data.materials[0] = mat
# else:
assert len(obj.data.materials) == 0
obj.data.materials.append(mat)
# Find the output node of the new material
output_node = None
for n in mat.node_tree.nodes:
if n.name == 'Material Output':
output_node = n
break
# Add a new GroupNode to the node tree of the active material,
# and copy the node tree from the preloaded node group to the
# new group node. This copying seems to happen by-value, so
# we can create multiple materials of the same type without them
# clobbering each other
group_node = mat.node_tree.nodes.new('ShaderNodeGroup')
group_node.node_tree = bpy.data.node_groups[name]
# Find and set the "Color" input of the new group node
for inp in group_node.inputs:
if inp.name in properties:
inp.default_value = properties[inp.name]
# Wire the output of the new group node to the input of
# the MaterialOutput node
mat.node_tree.links.new(
group_node.outputs['Shader'],
output_node.inputs['Surface'],
)
bpy.ops.wm.append(filename=str(local_path/"MyMetal.blend"/"NodeTree"/"MyMetal"))
bpy.ops.wm.append(filename=str(local_path/"Rubber.blend"/"NodeTree"/"Rubber"))
rand_color = rng.uniform(0, 1, (3,))
color = (rand_color[0], rand_color[1], rand_color[2], 1)
if FLAGS.rubber:
add_material('Rubber', object, Color=color)
object.cycles_visibility.shadow = False
else:
add_material('MyMetal', object, Color=color)
# --- Saving state; WARNING: uses a lot of disk space
# logging.info("Saving 'scene.blend' file...")
# renderer.save_state(job_dir / "scene.blend")
# --- Rendering
logging.info("Rendering the scene ...")
data_stack = renderer.render()
# --- Postprocessing
data_stack["segmentation"] = kb.adjust_segmentation_idxs(
data_stack["segmentation"],
scene.assets,
[obj]).astype(np.uint8)
# --- Save to image files
kb.file_io.write_rgba_batch(data_stack["rgba"], job_dir)
kb.file_io.write_depth_batch(data_stack["depth"], job_dir)
kb.file_io.write_segmentation_batch(data_stack["segmentation"], job_dir)
# --- Collect metadata
logging.info("Collecting and storing metadata for each object.")
data = {
"metadata": kb.get_scene_metadata(scene),
"camera": kb.get_camera_info(scene.camera),
"instances": kb.get_instance_info(scene),
}
kb.file_io.write_json(filename=job_dir / "metadata.json", data=data)
kb.done()