-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrender_utils.py
693 lines (581 loc) · 27.5 KB
/
render_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import os
import time
import torch
import imageio
import numpy as np
import torch.nn.functional as F
from run_nerf_helpers import *
from utils.flow_utils import flow_to_image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def batchify_rays(t, chain_5frames,
rays_flat, chunk=1024*16, **kwargs):
"""Render rays in smaller minibatches to avoid OOM.
"""
all_ret = {}
for i in range(0, rays_flat.shape[0], chunk):
ret = render_rays(t, chain_5frames, rays_flat[i:i+chunk], **kwargs)
for k in ret:
if k not in all_ret:
all_ret[k] = []
all_ret[k].append(ret[k])
all_ret = {k: torch.cat(all_ret[k], 0) for k in all_ret}
return all_ret
def render(t, chain_5frames,
H, W, focal, focal_render=None,
chunk=1024*16, rays=None, c2w=None, ndc=True,
near=0., far=1.,
use_viewdirs=False, c2w_staticcam=None,
**kwargs):
"""Render rays
Args:
H: int. Height of image in pixels.
W: int. Width of image in pixels.
focal: float. Focal length of pinhole camera.
chunk: int. Maximum number of rays to process simultaneously. Used to
control maximum memory usage. Does not affect final results.
rays: array of shape [2, batch_size, 3]. Ray origin and direction for
each example in batch.
c2w: array of shape [3, 4]. Camera-to-world transformation matrix.
ndc: bool. If True, represent ray origin, direction in NDC coordinates.
near: float or array of shape [batch_size]. Nearest distance for a ray.
far: float or array of shape [batch_size]. Farthest distance for a ray.
use_viewdirs: bool. If True, use viewing direction of a point in space in model.
c2w_staticcam: array of shape [3, 4]. If not None, use this transformation matrix for
camera while using other c2w argument for viewing directions.
Returns:
rgb_map: [batch_size, 3]. Predicted RGB values for rays.
disp_map: [batch_size]. Disparity map. Inverse of depth.
acc_map: [batch_size]. Accumulated opacity (alpha) along a ray.
extras: dict with everything returned by render_rays().
"""
if c2w is not None:
# special case to render full image
if focal_render is not None:
# Render full image using different focal length for dolly zoom. Inference only.
rays_o, rays_d = get_rays(H, W, focal_render, c2w)
else:
rays_o, rays_d = get_rays(H, W, focal, c2w)
else:
# use provided ray batch
rays_o, rays_d = rays
if use_viewdirs:
# provide ray directions as input
viewdirs = rays_d
if c2w_staticcam is not None:
raise NotImplementedError
# Make all directions unit magnitude.
# shape: [batch_size, 3]
viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
viewdirs = torch.reshape(viewdirs, [-1, 3]).float()
sh = rays_d.shape # [..., 3]
if ndc:
# for forward facing scenes
rays_o, rays_d = ndc_rays(H, W, focal, 1., rays_o, rays_d)
# Create ray batch
rays_o = torch.reshape(rays_o, [-1, 3]).float()
rays_d = torch.reshape(rays_d, [-1, 3]).float()
near, far = near * \
torch.ones_like(rays_d[..., :1]), far * torch.ones_like(rays_d[..., :1])
# (ray origin, ray direction, min dist, max dist) for each ray
rays = torch.cat([rays_o, rays_d, near, far], -1)
if use_viewdirs:
rays = torch.cat([rays, viewdirs], -1)
# Render and reshape
all_ret = batchify_rays(t, chain_5frames,
rays, chunk, **kwargs)
for k in all_ret:
k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
all_ret[k] = torch.reshape(all_ret[k], k_sh)
return all_ret
def render_path_batch(render_poses, time2render,
hwf, chunk, render_kwargs, savedir=None, focal2render=None):
"""Render frames using batch.
Args:
render_poses: array of shape [num_frame, 3, 4]. Camera-to-world transformation matrix of each frame.
time2render: array of shape [num_frame]. Time of each frame.
hwf: list. [Height of image in pixels, Width of image in pixels, Focal length of pinhole camera]
chunk: int. Maximum number of rays to process simultaneously. Used to
control maximum memory usage. Does not affect final results.
render_kwargs: dictionary. args for the render function.
savedir: string. Directory to save results.
focal2render: list. Only used to perform dolly-zoom.
Returns:
ret_dict: dictionary. Final and intermediate results.
"""
H, W, focal = hwf
ret_dict = {}
rgbs = []
rgbs_d = []
rgbs_s = []
dynamicnesses = []
time_curr = time.time()
for i, c2w in enumerate(render_poses):
print(i, time.time() - time_curr)
time_curr = time.time()
t = time2render[i]
if focal2render is not None:
# Render full image using different focal length
rays_o, rays_d = get_rays(H, W, focal2render[i], c2w)
else:
rays_o, rays_d = get_rays(H, W, focal, c2w)
rays_o = torch.reshape(rays_o, (-1, 3))
rays_d = torch.reshape(rays_d, (-1, 3))
batch_rays = torch.stack([rays_o, rays_d], 0)
rgb = []
rgb_d = []
rgb_s = []
dynamicness = []
for j in range(0, batch_rays.shape[1], chunk):
# print(j, '/', batch_rays.shape[1])
ret = render(t, False,
H, W, focal,
chunk=chunk, rays=batch_rays[:, j:j+chunk, :],
**render_kwargs)
rgb.append(ret['rgb_map_full'].cpu())
rgb_d.append(ret['rgb_map_d'].cpu())
rgb_s.append(ret['rgb_map_s'].cpu())
dynamicness.append(ret['dynamicness_map'].cpu())
rgb = torch.reshape(torch.cat(rgb, 0), (H, W, 3)).numpy()
rgb_d = torch.reshape(torch.cat(rgb_d, 0), (H, W, 3)).numpy()
rgb_s = torch.reshape(torch.cat(rgb_s, 0), (H, W, 3)).numpy()
dynamicness = torch.reshape(torch.cat(dynamicness, 0), (H, W)).numpy()
# Not a good solution. Should take care of this when preparing the data.
if W%2 == 1:
# rgb = cv2.resize(rgb, (W - 1, H))
rgb = rgb[:, :-1, :]
rgb_d = rgb_d[:, :-1, :]
rgb_s = rgb_s[:, :-1, :]
dynamicness = dynamicness[:, :-1]
rgbs.append(rgb)
rgbs_d.append(rgb_d)
rgbs_s.append(rgb_s)
dynamicnesses.append(dynamicness)
if savedir is not None:
rgb8 = to8b(rgbs[-1])
filename = os.path.join(savedir, '{:03d}.png'.format(i))
imageio.imwrite(filename, rgb8)
ret_dict['rgbs'] = np.stack(rgbs, 0)
ret_dict['rgbs_d'] = np.stack(rgbs_d, 0)
ret_dict['rgbs_s'] = np.stack(rgbs_s, 0)
ret_dict['dynamicnesses'] = np.stack(dynamicnesses, 0)
return ret_dict
def render_path(render_poses,
time2render,
hwf,
chunk,
render_kwargs,
savedir=None,
flows_gt_f=None,
flows_gt_b=None,
focal2render=None):
"""Render frames.
Args:
render_poses: array of shape [num_frame, 3, 4]. Camera-to-world transformation matrix of each frame.
time2render: array of shape [num_frame]. Time of each frame.
hwf: list. [Height of image in pixels, Width of image in pixels, Focal length of pinhole camera]
chunk: int. Maximum number of rays to process simultaneously. Used to
control maximum memory usage. Does not affect final results.
render_kwargs: dictionary. args for the render function.
savedir: string. Directory to save results.
focal2render: list. Only used to perform dolly-zoom.
Returns:
ret_dict: dictionary. Final and intermediate results.
"""
H, W, focal = hwf
ret_dict = {}
rgbs = []
rgbs_d = []
rgbs_s = []
depths = []
depths_d = []
depths_s = []
flows_f = []
flows_b = []
dynamicness = []
blending = []
grid = np.stack(np.meshgrid(np.arange(W, dtype=np.float32),
np.arange(H, dtype=np.float32), indexing='xy'), -1)
grid = torch.Tensor(grid)
time_curr = time.time()
for i, c2w in enumerate(render_poses):
t = time2render[i]
pose = c2w[:3, :4]
print(i, time.time() - time_curr)
time_curr = time.time()
if focal2render is None:
# Normal rendering.
ret = render(t, False,
H, W, focal,
chunk=1024*32, c2w=pose,
**render_kwargs)
else:
# Render image using different focal length.
ret = render(t, False,
H, W, focal, focal_render=focal2render[i],
chunk=1024*32, c2w=pose,
**render_kwargs)
rgbs.append(ret['rgb_map_full'].cpu().numpy())
rgbs_d.append(ret['rgb_map_d'].cpu().numpy())
rgbs_s.append(ret['rgb_map_s'].cpu().numpy())
depths.append(ret['depth_map_full'].cpu().numpy())
depths_d.append(ret['depth_map_d'].cpu().numpy())
depths_s.append(ret['depth_map_s'].cpu().numpy())
dynamicness.append(ret['dynamicness_map'].cpu().numpy())
if flows_gt_f is not None:
# Reconstruction. Flow is caused by both changing camera and changing time.
pose_f = render_poses[min(i + 1, int(len(render_poses)) - 1), :3, :4]
pose_b = render_poses[max(i - 1, 0), :3, :4]
else:
# Non training view-time. Flow is caused by changing time (just for visualization).
pose_f = render_poses[i, :3, :4]
pose_b = render_poses[i, :3, :4]
# Sceneflow induced optical flow
induced_flow_f_ = induce_flow(H, W, focal, pose_f, ret['weights_d'], ret['raw_pts_f'], grid[..., :2])
induced_flow_b_ = induce_flow(H, W, focal, pose_b, ret['weights_d'], ret['raw_pts_b'], grid[..., :2])
if (i + 1) >= len(render_poses):
induced_flow_f = np.zeros((H, W, 2))
else:
induced_flow_f = induced_flow_f_.cpu().numpy()
if flows_gt_f is not None:
flow_gt_f = flows_gt_f[i].cpu().numpy()
induced_flow_f = np.concatenate((induced_flow_f, flow_gt_f), 0)
induced_flow_f_img = flow_to_image(induced_flow_f)
flows_f.append(induced_flow_f_img)
if (i - 1) < 0:
induced_flow_b = np.zeros((H, W, 2))
else:
induced_flow_b = induced_flow_b_.cpu().numpy()
if flows_gt_b is not None:
flow_gt_b = flows_gt_b[i].cpu().numpy()
induced_flow_b = np.concatenate((induced_flow_b, flow_gt_b), 0)
induced_flow_b_img = flow_to_image(induced_flow_b)
flows_b.append(induced_flow_b_img)
if i == 0:
ret_dict['sceneflow_f_NDC'] = ret['sceneflow_f'].cpu().numpy()
ret_dict['sceneflow_b_NDC'] = ret['sceneflow_b'].cpu().numpy()
ret_dict['blending'] = ret['blending'].cpu().numpy()
weights = np.concatenate((ret['weights_d'][..., None].cpu().numpy(),
ret['weights_s'][..., None].cpu().numpy(),
ret['blending'][..., None].cpu().numpy(),
ret['weights_full'][..., None].cpu().numpy()))
ret_dict['weights'] = np.moveaxis(weights, [0, 1, 2, 3], [1, 2, 0, 3])
if savedir is not None:
rgb8 = to8b(rgbs[-1])
filename = os.path.join(savedir, '{:03d}.png'.format(i))
imageio.imwrite(filename, rgb8)
ret_dict['rgbs'] = np.stack(rgbs, 0)
ret_dict['rgbs_d'] = np.stack(rgbs_d, 0)
ret_dict['rgbs_s'] = np.stack(rgbs_s, 0)
ret_dict['depths'] = np.stack(depths, 0)
ret_dict['depths_d'] = np.stack(depths_d, 0)
ret_dict['depths_s'] = np.stack(depths_s, 0)
ret_dict['dynamicness'] = np.stack(dynamicness, 0)
ret_dict['flows_f'] = np.stack(flows_f, 0)
ret_dict['flows_b'] = np.stack(flows_b, 0)
return ret_dict
def raw2outputs(raw_s,
raw_d,
blending,
z_vals,
rays_d,
raw_noise_std):
"""Transforms model's predictions to semantically meaningful values.
Args:
raw_d: [num_rays, num_samples along ray, 4]. Prediction from Dynamic model.
raw_s: [num_rays, num_samples along ray, 4]. Prediction from Static model.
z_vals: [num_rays, num_samples along ray]. Integration time.
rays_d: [num_rays, 3]. Direction of each ray.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
"""
# Function for computing density from model prediction. This value is
# strictly between [0, 1].
def raw2alpha(raw, dists, act_fn=F.relu): return 1.0 - \
torch.exp(-act_fn(raw) * dists)
# Compute 'distance' (in time) between each integration time along a ray.
dists = z_vals[..., 1:] - z_vals[..., :-1]
# The 'distance' from the last integration time is infinity.
dists = torch.cat(
[dists, torch.Tensor([1e10]).expand(dists[..., :1].shape)],
-1) # [N_rays, N_samples]
# Multiply each distance by the norm of its corresponding direction ray
# to convert to real world distance (accounts for non-unit directions).
dists = dists * torch.norm(rays_d[..., None, :], dim=-1)
# Extract RGB of each sample position along each ray.
rgb_d = torch.sigmoid(raw_d[..., :3]) # [N_rays, N_samples, 3]
rgb_s = torch.sigmoid(raw_s[..., :3]) # [N_rays, N_samples, 3]
# Add noise to model's predictions for density. Can be used to
# regularize network during training (prevents floater artifacts).
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(raw_d[..., 3].shape) * raw_noise_std
# Predict density of each sample along each ray. Higher values imply
# higher likelihood of being absorbed at this point.
alpha_d = raw2alpha(raw_d[..., 3] + noise, dists) # [N_rays, N_samples]
alpha_s = raw2alpha(raw_s[..., 3] + noise, dists) # [N_rays, N_samples]
alphas = 1. - (1. - alpha_s) * (1. - alpha_d) # [N_rays, N_samples]
T_d = torch.cumprod(torch.cat([torch.ones((alpha_d.shape[0], 1)), 1. - alpha_d + 1e-10], -1), -1)[:, :-1]
T_s = torch.cumprod(torch.cat([torch.ones((alpha_s.shape[0], 1)), 1. - alpha_s + 1e-10], -1), -1)[:, :-1]
T_full = torch.cumprod(torch.cat([torch.ones((alpha_d.shape[0], 1)), (1. - alpha_d * blending) * (1. - alpha_s * (1. - blending)) + 1e-10], -1), -1)[:, :-1]
# T_full = torch.cumprod(torch.cat([torch.ones((alpha_d.shape[0], 1)), torch.pow(1. - alpha_d + 1e-10, blending) * torch.pow(1. - alpha_s + 1e-10, 1. - blending)], -1), -1)[:, :-1]
# T_full = torch.cumprod(torch.cat([torch.ones((alpha_d.shape[0], 1)), (1. - alpha_d) * (1. - alpha_s) + 1e-10], -1), -1)[:, :-1]
# Compute weight for RGB of each sample along each ray. A cumprod() is
# used to express the idea of the ray not having reflected up to this
# sample yet.
weights_d = alpha_d * T_d
weights_s = alpha_s * T_s
weights_full = (alpha_d * blending + alpha_s * (1. - blending)) * T_full
# weights_full = alphas * T_full
# Computed weighted color of each sample along each ray.
rgb_map_d = torch.sum(weights_d[..., None] * rgb_d, -2)
rgb_map_s = torch.sum(weights_s[..., None] * rgb_s, -2)
rgb_map_full = torch.sum(
(T_full * alpha_d * blending)[..., None] * rgb_d + \
(T_full * alpha_s * (1. - blending))[..., None] * rgb_s, -2)
# Estimated depth map is expected distance.
depth_map_d = torch.sum(weights_d * z_vals, -1)
depth_map_s = torch.sum(weights_s * z_vals, -1)
depth_map_full = torch.sum(weights_full * z_vals, -1)
# Sum of weights along each ray. This value is in [0, 1] up to numerical error.
acc_map_d = torch.sum(weights_d, -1)
acc_map_s = torch.sum(weights_s, -1)
acc_map_full = torch.sum(weights_full, -1)
# Computed dynamicness
dynamicness_map = torch.sum(weights_full * blending, -1)
# dynamicness_map = 1 - T_d[..., -1]
return rgb_map_full, depth_map_full, acc_map_full, weights_full, \
rgb_map_s, depth_map_s, acc_map_s, weights_s, \
rgb_map_d, depth_map_d, acc_map_d, weights_d, dynamicness_map
def raw2outputs_d(raw_d,
z_vals,
rays_d,
raw_noise_std):
# Function for computing density from model prediction. This value is
# strictly between [0, 1].
def raw2alpha(raw, dists, act_fn=F.relu): return 1.0 - \
torch.exp(-act_fn(raw) * dists)
# Compute 'distance' (in time) between each integration time along a ray.
dists = z_vals[..., 1:] - z_vals[..., :-1]
# The 'distance' from the last integration time is infinity.
dists = torch.cat(
[dists, torch.Tensor([1e10]).expand(dists[..., :1].shape)],
-1) # [N_rays, N_samples]
# Multiply each distance by the norm of its corresponding direction ray
# to convert to real world distance (accounts for non-unit directions).
dists = dists * torch.norm(rays_d[..., None, :], dim=-1)
# Extract RGB of each sample position along each ray.
rgb_d = torch.sigmoid(raw_d[..., :3]) # [N_rays, N_samples, 3]
# Add noise to model's predictions for density. Can be used to
# regularize network during training (prevents floater artifacts).
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(raw_d[..., 3].shape) * raw_noise_std
# Predict density of each sample along each ray. Higher values imply
# higher likelihood of being absorbed at this point.
alpha_d = raw2alpha(raw_d[..., 3] + noise, dists) # [N_rays, N_samples]
T_d = torch.cumprod(torch.cat([torch.ones((alpha_d.shape[0], 1)), 1. - alpha_d + 1e-10], -1), -1)[:, :-1]
# Compute weight for RGB of each sample along each ray. A cumprod() is
# used to express the idea of the ray not having reflected up to this
# sample yet.
weights_d = alpha_d * T_d
# Computed weighted color of each sample along each ray.
rgb_map_d = torch.sum(weights_d[..., None] * rgb_d, -2)
return rgb_map_d, weights_d
def render_rays(t,
chain_5frames,
ray_batch,
network_fn_d,
network_fn_s,
network_query_fn_d,
network_query_fn_s,
N_samples,
num_img,
DyNeRF_blending,
pretrain=False,
lindisp=False,
perturb=0.,
N_importance=0,
raw_noise_std=0.,
inference=False):
"""Volumetric rendering.
Args:
ray_batch: array of shape [batch_size, ...]. All information necessary
for sampling along a ray, including: ray origin, ray direction, min
dist, max dist, and unit-magnitude viewing direction.
network_fn_d: function. Model for predicting RGB and density at each point
in space.
network_query_fn_d: function used for passing queries to network_fn_d.
N_samples: int. Number of different times to sample along each ray.
lindisp: bool. If True, sample linearly in inverse depth rather than in depth.
perturb: float, 0 or 1. If non-zero, each ray is sampled at stratified
random points in time.
N_importance: int. Number of additional times to sample along each ray.
These samples are only passed to network_fine.
network_fine: "fine" network with same spec as network_fn.
raw_noise_std: ...
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray. Comes from fine model.
disp_map: [num_rays]. Disparity map. 1 / depth.
acc_map: [num_rays]. Accumulated opacity along each ray. Comes from fine model.
raw: [num_rays, num_samples, 4]. Raw predictions from model.
rgb0: See rgb_map. Output for coarse model.
disp0: See disp_map. Output for coarse model.
acc0: See acc_map. Output for coarse model.
z_std: [num_rays]. Standard deviation of distances along ray for each
sample.
"""
# batch size
N_rays = ray_batch.shape[0]
# ray_batch: [N_rays, 11]
# rays_o: [N_rays, 0:3]
# rays_d: [N_rays, 3:6]
# near: [N_rays, 6:7]
# far: [N_rays, 7:8]
# viewdirs: [N_rays, 8:11]
# Extract ray origin, direction.
rays_o, rays_d = ray_batch[:, 0:3], ray_batch[:, 3:6] # [N_rays, 3] each
# Extract unit-normalized viewing direction.
viewdirs = ray_batch[:, -3:] if ray_batch.shape[-1] > 8 else None
# Extract lower, upper bound for ray distance.
bounds = torch.reshape(ray_batch[..., 6:8], [-1, 1, 2])
near, far = bounds[..., 0], bounds[..., 1]
# Decide where to sample along each ray. Under the logic, all rays will be sampled at
# the same times.
t_vals = torch.linspace(0., 1., steps=N_samples)
if not lindisp:
# Space integration times linearly between 'near' and 'far'. Same
# integration points will be used for all rays.
z_vals = near * (1.-t_vals) + far * (t_vals)
else:
# Sample linearly in inverse depth (disparity).
z_vals = 1./(1./near * (1.-t_vals) + 1./far * (t_vals))
z_vals = z_vals.expand([N_rays, N_samples])
# Perturb sampling time along each ray.
if perturb > 0.:
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
# Points in space to evaluate model at.
pts = rays_o[..., None, :] + rays_d[..., None, :] * \
z_vals[..., :, None] # [N_rays, N_samples, 3]
# Add the time dimension to xyz.
pts_ref = torch.cat([pts, torch.ones_like(pts[..., 0:1]) * t], -1)
# First pass: we have the staticNeRF results
raw_s = network_query_fn_s(pts_ref[..., :3], viewdirs, network_fn_s)
# raw_s: [N_rays, N_samples, 5]
# raw_s_rgb: [N_rays, N_samples, 0:3]
# raw_s_a: [N_rays, N_samples, 3:4]
# raw_s_blending: [N_rays, N_samples, 4:5]
# Second pass: we have the DyanmicNeRF results and the blending weight
raw_d = network_query_fn_d(pts_ref, viewdirs, network_fn_d)
# raw_d: [N_rays, N_samples, 11]
# raw_d_rgb: [N_rays, N_samples, 0:3]
# raw_d_a: [N_rays, N_samples, 3:4]
# sceneflow_b: [N_rays, N_samples, 4:7]
# sceneflow_f: [N_rays, N_samples, 7:10]
# raw_d_blending: [N_rays, N_samples, 10:11]
if pretrain:
rgb_map_s, _ = raw2outputs_d(raw_s[..., :4],
z_vals,
rays_d,
raw_noise_std)
ret = {'rgb_map_s': rgb_map_s}
return ret
raw_s_rgba = raw_s[..., :4]
raw_d_rgba = raw_d[..., :4]
# We need the sceneflow from the dynamicNeRF.
sceneflow_b = raw_d[..., 4:7]
sceneflow_f = raw_d[..., 7:10]
if DyNeRF_blending:
blending = raw_d[..., 10]
else:
blending = raw_s[..., 4]
# if sfmask:
# sceneflow_f = sceneflow_f * blending.detach()[..., None]
# sceneflow_b = sceneflow_b * blending.detach()[..., None]
# Rerndering.
rgb_map_full, depth_map_full, acc_map_full, weights_full, \
rgb_map_s, depth_map_s, acc_map_s, weights_s, \
rgb_map_d, depth_map_d, acc_map_d, weights_d, \
dynamicness_map = raw2outputs(raw_s_rgba,
raw_d_rgba,
blending,
z_vals,
rays_d,
raw_noise_std)
ret = {'rgb_map_full': rgb_map_full, 'depth_map_full': depth_map_full, 'acc_map_full': acc_map_full, 'weights_full': weights_full,
'rgb_map_s': rgb_map_s, 'depth_map_s': depth_map_s, 'acc_map_s': acc_map_s, 'weights_s': weights_s,
'rgb_map_d': rgb_map_d, 'depth_map_d': depth_map_d, 'acc_map_d': acc_map_d, 'weights_d': weights_d,
'dynamicness_map': dynamicness_map}
t_interval = 1. / num_img * 2.
pts_f = torch.cat([pts + sceneflow_f, torch.ones_like(pts[..., 0:1]) * (t + t_interval)], -1)
pts_b = torch.cat([pts + sceneflow_b, torch.ones_like(pts[..., 0:1]) * (t - t_interval)], -1)
ret['sceneflow_b'] = sceneflow_b
ret['sceneflow_f'] = sceneflow_f
ret['raw_pts'] = pts_ref[..., :3]
ret['raw_pts_f'] = pts_f[..., :3]
ret['raw_pts_b'] = pts_b[..., :3]
ret['blending'] = blending
# Third pass: we have the DyanmicNeRF results at time t - 1
raw_d_b = network_query_fn_d(pts_b, viewdirs, network_fn_d)
raw_d_b_rgba = raw_d_b[..., :4]
sceneflow_b_b = raw_d_b[..., 4:7]
sceneflow_b_f = raw_d_b[..., 7:10]
# Rerndering t - 1
rgb_map_d_b, weights_d_b = raw2outputs_d(raw_d_b_rgba,
z_vals,
rays_d,
raw_noise_std)
ret['sceneflow_b_f'] = sceneflow_b_f
ret['rgb_map_d_b'] = rgb_map_d_b
ret['acc_map_d_b'] = torch.abs(torch.sum(weights_d_b - weights_d, -1))
# Fourth pass: we have the DyanmicNeRF results at time t + 1
raw_d_f = network_query_fn_d(pts_f, viewdirs, network_fn_d)
raw_d_f_rgba = raw_d_f[..., :4]
sceneflow_f_b = raw_d_f[..., 4:7]
sceneflow_f_f = raw_d_f[..., 7:10]
rgb_map_d_f, weights_d_f = raw2outputs_d(raw_d_f_rgba,
z_vals,
rays_d,
raw_noise_std)
ret['sceneflow_f_b'] = sceneflow_f_b
ret['rgb_map_d_f'] = rgb_map_d_f
ret['acc_map_d_f'] = torch.abs(torch.sum(weights_d_f - weights_d, -1))
if inference:
return ret
# Also consider time t - 2 and t + 2 (Learn from NSFF)
# Fifth pass: we have the DyanmicNeRF results at time t - 2
pts_b_b = torch.cat([pts_b[..., :3] + sceneflow_b_b, torch.ones_like(pts[..., 0:1]) * (t - t_interval * 2)], -1)
ret['raw_pts_b_b'] = pts_b_b[..., :3]
if chain_5frames:
raw_d_b_b = network_query_fn_d(pts_b_b, viewdirs, network_fn_d)
raw_d_b_b_rgba = raw_d_b_b[..., :4]
rgb_map_d_b_b, _ = raw2outputs_d(raw_d_b_b_rgba,
z_vals,
rays_d,
raw_noise_std)
ret['rgb_map_d_b_b'] = rgb_map_d_b_b
# Sixth pass: we have the DyanmicNeRF results at time t + 2
pts_f_f = torch.cat([pts_f[..., :3] + sceneflow_f_f, torch.ones_like(pts[..., 0:1]) * (t + t_interval * 2)], -1)
ret['raw_pts_f_f'] = pts_f_f[..., :3]
if chain_5frames:
raw_d_f_f = network_query_fn_d(pts_f_f, viewdirs, network_fn_d)
raw_d_f_f_rgba = raw_d_f_f[..., :4]
rgb_map_d_f_f, _ = raw2outputs_d(raw_d_f_f_rgba,
z_vals,
rays_d,
raw_noise_std)
ret['rgb_map_d_f_f'] = rgb_map_d_f_f
for k in ret:
if torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any():
print(f"! [Numerical Error] {k} contains nan or inf.")
import ipdb; ipdb.set_trace()
return ret