If you want repeat our whole benchmark and evaluation workflow, please configure environment as follow.
You can build the python env for snakemake workflow by conda
or mamba
. We recommend to use mamba
to speed up the installation process.
- snakemake
mamba create -p ./conda python==3.8 -y && conda activate ./conda
mamba install -c bioconda -c conda-forge snakemake==7.12.0 tabulate==0.8.10 pandoc -y
git clone [email protected]:gao-lab/SLAT.git
cd SLAT
pip install -e ".[dev,docs]"
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu117.html
You also should configure R
environment. We strong recommend to compile a new R-4.1.3
rather than install R in conda.
Warning Please make sure you have deactivated any conda env before using
R
cd SLAT/resource
wget https://cran.r-project.org/src/base/R-4/R-4.1.3.tar.gz
tar -xzvf R-4.1.3.tar.gz && cd R-4.1.3 &&
./configure --without-x --with-cairo --with-libpng --with-libtiff --with-jpeglib --enable-R-shlib --prefix={YOUR_PATH} &&
make && make install
Then register the jupyter kernel for R
so snakemake can call R
in benchmark workflow.
install.packages('IRkernel')
IRkernel::installspec(name = 'slat_r', displayname = 'slat_r')
At last, please install all R packages we used from renv.lock
(see renv
).
install.packages('renv')
install.packages('IRkernel') # install IRkernel again inside renv env
renv::restore()
You also need install singularity
, because we use container to ensure the repeatability of benchmark results.