forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
286 lines (248 loc) · 9.97 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import io
import os
import re
import subprocess
from typing import List, Set
import warnings
from packaging.version import parse, Version
import setuptools
import torch
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME
ROOT_DIR = os.path.dirname(__file__)
# Supported NVIDIA GPU architectures.
SUPPORTED_ARCHS = {"7.0", "7.5", "8.0", "8.6", "8.9", "9.0"}
# Compiler flags.
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
# TODO(woosuk): Should we use -O3?
NVCC_FLAGS = ["-O2", "-std=c++17"]
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
if CUDA_HOME is None:
raise RuntimeError(
"Cannot find CUDA_HOME. CUDA must be available to build the package.")
def get_nvcc_cuda_version(cuda_dir: str) -> Version:
"""Get the CUDA version from nvcc.
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
return nvcc_cuda_version
def get_torch_arch_list() -> Set[str]:
# TORCH_CUDA_ARCH_LIST can have one or more architectures,
# e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the
# compiler to additionally include PTX code that can be runtime-compiled
# and executed on the 8.6 or newer architectures. While the PTX code will
# not give the best performance on the newer architectures, it provides
# forward compatibility.
env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if env_arch_list is None:
return set()
# List are separated by ; or space.
torch_arch_list = set(env_arch_list.replace(" ", ";").split(";"))
if not torch_arch_list:
return set()
# Filter out the invalid architectures and print a warning.
valid_archs = SUPPORTED_ARCHS.union({s + "+PTX" for s in SUPPORTED_ARCHS})
arch_list = torch_arch_list.intersection(valid_archs)
# If none of the specified architectures are valid, raise an error.
if not arch_list:
raise RuntimeError(
"None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env "
f"variable ({env_arch_list}) is supported. "
f"Supported CUDA architectures are: {valid_archs}.")
invalid_arch_list = torch_arch_list - valid_archs
if invalid_arch_list:
warnings.warn(
f"Unsupported CUDA architectures ({invalid_arch_list}) are "
"excluded from the `TORCH_CUDA_ARCH_LIST` env variable "
f"({env_arch_list}). Supported CUDA architectures are: "
f"{valid_archs}.")
return arch_list
# First, check the TORCH_CUDA_ARCH_LIST environment variable.
compute_capabilities = get_torch_arch_list()
if not compute_capabilities:
# If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available
# GPUs on the current machine.
device_count = torch.cuda.device_count()
for i in range(device_count):
major, minor = torch.cuda.get_device_capability(i)
if major < 7:
raise RuntimeError(
"GPUs with compute capability below 7.0 are not supported.")
compute_capabilities.add(f"{major}.{minor}")
nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
if not compute_capabilities:
# If no GPU is specified nor available, add all supported architectures
# based on the NVCC CUDA version.
compute_capabilities = SUPPORTED_ARCHS.copy()
if nvcc_cuda_version < Version("11.1"):
compute_capabilities.remove("8.6")
if nvcc_cuda_version < Version("11.8"):
compute_capabilities.remove("8.9")
compute_capabilities.remove("9.0")
# Validate the NVCC CUDA version.
if nvcc_cuda_version < Version("11.0"):
raise RuntimeError("CUDA 11.0 or higher is required to build the package.")
if nvcc_cuda_version < Version("11.1"):
if any(cc.startswith("8.6") for cc in compute_capabilities):
raise RuntimeError(
"CUDA 11.1 or higher is required for compute capability 8.6.")
if nvcc_cuda_version < Version("11.8"):
if any(cc.startswith("8.9") for cc in compute_capabilities):
# CUDA 11.8 is required to generate the code targeting compute capability 8.9.
# However, GPUs with compute capability 8.9 can also run the code generated by
# the previous versions of CUDA 11 and targeting compute capability 8.0.
# Therefore, if CUDA 11.8 is not available, we target compute capability 8.0
# instead of 8.9.
warnings.warn(
"CUDA 11.8 or higher is required for compute capability 8.9. "
"Targeting compute capability 8.0 instead.")
compute_capabilities = set(cc for cc in compute_capabilities
if not cc.startswith("8.9"))
compute_capabilities.add("8.0+PTX")
if any(cc.startswith("9.0") for cc in compute_capabilities):
raise RuntimeError(
"CUDA 11.8 or higher is required for compute capability 9.0.")
# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
num = capability[0] + capability[2]
NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
if capability.endswith("+PTX"):
NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"]
# Use NVCC threads to parallelize the build.
if nvcc_cuda_version >= Version("11.2"):
num_threads = min(os.cpu_count(), 8)
NVCC_FLAGS += ["--threads", str(num_threads)]
ext_modules = []
# Cache operations.
cache_extension = CUDAExtension(
name="vllm.cache_ops",
sources=["csrc/cache.cpp", "csrc/cache_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(cache_extension)
# Attention kernels.
attention_extension = CUDAExtension(
name="vllm.attention_ops",
sources=["csrc/attention.cpp", "csrc/attention/attention_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(attention_extension)
# Positional encoding kernels.
positional_encoding_extension = CUDAExtension(
name="vllm.pos_encoding_ops",
sources=["csrc/pos_encoding.cpp", "csrc/pos_encoding_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(positional_encoding_extension)
# Layer normalization kernels.
layernorm_extension = CUDAExtension(
name="vllm.layernorm_ops",
sources=["csrc/layernorm.cpp", "csrc/layernorm_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(layernorm_extension)
# Activation kernels.
activation_extension = CUDAExtension(
name="vllm.activation_ops",
sources=["csrc/activation.cpp", "csrc/activation_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(activation_extension)
# Quantization kernels.
quantization_extension = CUDAExtension(
name="vllm.quantization_ops",
sources=[
"csrc/quantization.cpp",
"csrc/quantization/awq/gemm_kernels.cu",
"csrc/quantization/squeezellm/quant_cuda_kernel.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(quantization_extension)
# Misc. CUDA utils.
cuda_utils_extension = CUDAExtension(
name="vllm.cuda_utils",
sources=["csrc/cuda_utils.cpp", "csrc/cuda_utils_kernels.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(cuda_utils_extension)
def get_path(*filepath) -> str:
return os.path.join(ROOT_DIR, *filepath)
def find_version(filepath: str):
"""Extract version information from the given filepath.
Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
"""
with open(filepath) as fp:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
fp.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
def read_readme() -> str:
"""Read the README file if present."""
p = get_path("README.md")
if os.path.isfile(p):
return io.open(get_path("README.md"), "r", encoding="utf-8").read()
else:
return ""
def get_requirements() -> List[str]:
"""Get Python package dependencies from requirements.txt."""
with open(get_path("requirements.txt")) as f:
requirements = f.read().strip().split("\n")
return requirements
setuptools.setup(
name="vllm",
version=find_version(get_path("vllm", "__init__.py")),
author="vLLM Team",
license="Apache 2.0",
description=("A high-throughput and memory-efficient inference and "
"serving engine for LLMs"),
long_description=read_readme(),
long_description_content_type="text/markdown",
url="https://github.com/vllm-project/vllm",
project_urls={
"Homepage": "https://github.com/vllm-project/vllm",
"Documentation": "https://vllm.readthedocs.io/en/latest/",
},
classifiers=[
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"License :: OSI Approved :: Apache Software License",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
packages=setuptools.find_packages(exclude=("benchmarks", "csrc", "docs",
"examples", "tests")),
python_requires=">=3.8",
install_requires=get_requirements(),
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
package_data={"vllm": ["py.typed"]},
)