-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
53 lines (41 loc) · 2.13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import torch
import logging
import test
import util
import models
import parser
import commons
from classifiers import AAMC, LMCC, LinearLayer
from datasets import initialize, TrainDataset, TestDataset
args = parser.parse_arguments()
assert args.train_set_path is not None, 'you must specify the train set path'
assert args.test_set_path is not None, 'you must specify the test set path'
commons.make_deterministic(args.seed)
commons.setup_logging(args.save_dir, console="info")
logging.info(" ".join(sys.argv))
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {args.save_dir}")
#### Datasets & DataLoaders
groups = [TrainDataset(args.train_set_path, dataset_name=args.dataset_name, group_num=n, M=args.M, N=args.N,
min_images_per_class=args.min_images_per_class
) for n in range(args.N * args.N)]
test_dataset = TestDataset(args.test_set_path, M=args.M, N=args.N, image_size=args.test_resize)
test_dl = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=2, pin_memory=True)
#### Model
model = models.GeoClassNet(args.backbone).to(args.device)
# Each group has its own classifier, which depends on the number of classes in the group
if args.classifier_type == "AAMC":
classifiers = [AAMC(model.feature_dim, group.get_classes_num(), s=args.lmcc_s, m=args.lmcc_m) for group in groups]
elif args.classifier_type == "LMCC":
classifiers = [LMCC(model.feature_dim, group.get_classes_num(), s=args.lmcc_s, m=args.lmcc_m) for group in groups]
elif args.classifier_type == "FC_CE":
classifiers = [LinearLayer(model.feature_dim, group.get_classes_num()) for group in groups]
logging.info(f"Feature dim: {model.feature_dim}")
if args.resume_model is not None:
model, classifiers = util.resume_model(args, model, classifiers)
else:
logging.info("WARNING: You didn't provide a path to resume the model (--resume_model parameter). " +
"Evaluation will be computed using randomly initialized weights.")
lr_str = test.inference(args, model, classifiers, test_dl, groups, len(test_dataset))
logging.info(f"LR: {lr_str}")