You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/tmp/ipykernel_3678/871858585.py in caliters_perm(model, P1_gt_copy, P2_gt_copy, A1_gt, A2_gt, n1_gt, n2_gt, estimate_iters)
228 for estimate_iter in range(estimate_iters):
229 s_prem_i, Inlier_src_pre, Inlier_ref_pre = model(P1_gt_copy, P2_gt_copy,
--> 230 A1_gt, A2_gt, n1_gt, n2_gt)
231 if cfg.PGM.USEINLIERRATE:
232 s_prem_i = Inlier_src_pre * s_prem_i * Inlier_ref_pre.transpose(2, 1).contiguous()
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/home/ubuntu/PointCloudRegistration/AIModels/RGM/models/gconv.py in forward(self, g1, g2)
34
35 def forward(self, g1, g2):
---> 36 emb1 = self.gconv(*g1)
37 emb2 = self.gconv(*g2)
38 # embx are tensors of size (bs, N, num_features)
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/home/ubuntu/PointCloudRegistration/AIModels/RGM/models/gconv.py in forward(self, A, x, norm)
19 A = F.normalize(A, p=1, dim=-2)
20 print(x.shape)
---> 21 ax = self.a_fc(x)
22 ux = self.u_fc(x)
23 x = torch.bmm(A, F.relu(ax)) + F.relu(ux) # has size (bs, N, num_outputs)
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
Change the FEATURE_NODE_CHANNEL and FEATURE_EDGE_CHANNEL may help, it should be caused by nn.linear(in_features, out_features), previous out_features need to be equal to the next in_features
RuntimeError Traceback (most recent call last)
/tmp/ipykernel_3678/3876408280.py in
3 P1_gt_copy_inv = P1_gt_copy.clone()
4 P2_gt_copy_inv = P2_gt_copy.clone()
----> 5 s_perm_mat = caliters_perm(model.float(), P1_gt_copy.float(), P2_gt_copy.float(), torch.from_numpy(A1_gt), torch.from_numpy(A2_gt), n1_gt, n2_gt, estimate_iters)
6 """if cfg.EVAL.CYCLE:
7 s_perm_mat_inv = caliters_perm(model, P2_gt_copy_inv, P1_gt_copy_inv, A2_gt, A1_gt, n2_gt, n1_gt, estimate_iters)
/tmp/ipykernel_3678/871858585.py in caliters_perm(model, P1_gt_copy, P2_gt_copy, A1_gt, A2_gt, n1_gt, n2_gt, estimate_iters)
228 for estimate_iter in range(estimate_iters):
229 s_prem_i, Inlier_src_pre, Inlier_ref_pre = model(P1_gt_copy, P2_gt_copy,
--> 230 A1_gt, A2_gt, n1_gt, n2_gt)
231 if cfg.PGM.USEINLIERRATE:
232 s_prem_i = Inlier_src_pre * s_prem_i * Inlier_ref_pre.transpose(2, 1).contiguous()
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/tmp/ipykernel_3678/871858585.py in forward(self, P_src, P_tgt, A_src, A_tgt, ns_src, ns_tgt)
101 emb_src, emb_tgt = gnn_layer([A_src1, emb_src], [A_tgt1, emb_tgt])
102 else:
--> 103 emb_src, emb_tgt = gnn_layer([A_src, emb_src], [A_tgt, emb_tgt])
104 affinity = getattr(self, 'affinity_{}'.format(i))
105 # emb_src_norm = torch.norm(emb_src, p=2, dim=2, keepdim=True).detach()
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/home/ubuntu/PointCloudRegistration/AIModels/RGM/models/gconv.py in forward(self, g1, g2)
34
35 def forward(self, g1, g2):
---> 36 emb1 = self.gconv(*g1)
37 emb2 = self.gconv(*g2)
38 # embx are tensors of size (bs, N, num_features)
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/home/ubuntu/PointCloudRegistration/AIModels/RGM/models/gconv.py in forward(self, A, x, norm)
19 A = F.normalize(A, p=1, dim=-2)
20 print(x.shape)
---> 21 ax = self.a_fc(x)
22 ux = self.u_fc(x)
23 x = torch.bmm(A, F.relu(ax)) + F.relu(ux) # has size (bs, N, num_outputs)
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/modules/linear.py in forward(self, input)
92
93 def forward(self, input: Tensor) -> Tensor:
---> 94 return F.linear(input, self.weight, self.bias)
95
96 def extra_repr(self) -> str:
/opt/conda/envs/fcgf/lib/python3.7/site-packages/torch/nn/functional.py in linear(input, weight, bias)
1751 if has_torch_function_variadic(input, weight):
1752 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1753 return torch._C._nn.linear(input, weight, bias)
1754
1755
RuntimeError: mat1 and mat2 shapes cannot be multiplied (76x1024 and 640x1024)
The text was updated successfully, but these errors were encountered: