Skip to content

Latest commit

 

History

History
38 lines (28 loc) · 1.17 KB

README.md

File metadata and controls

38 lines (28 loc) · 1.17 KB

Depth Completion Pipeline

Prepare for the environment

  • Install basic packages
    pip install matplotlib tensorboard scipy einops opencv-python pypng 
    pip install nuscenes-devkit scikit-image pillow
  • Install mseg
    cd ./external
    pip install -e ./mseg-semantic/mseg-api
    pip install -e ./mseg-semantic
  • Build flow model
    cd ./SeparableFlow-main/libs/GANet
    TORCH=$(python -c "import os; import torch; print(os.path.dirname(torch.__file__))")
    python setup.py build
    cp -r build/lib* build/lib

Download Pretrained models

Run the pipeline

1. Run `python scripts/run.py`
2. The output will be saved in data/scenes/depths