A sequence x1, x2, ..., xn
is Fibonacci-like if:
n >= 3
xi + xi+1 == xi+2
for alli + 2 <= n
Given a strictly increasing array arr
of positive integers forming a sequence, return the length of the longest Fibonacci-like subsequence of arr
. If one does not exist, return 0
.
A subsequence is derived from another sequence arr
by deleting any number of elements (including none) from arr
, without changing the order of the remaining elements. For example, [3, 5, 8]
is a subsequence of [3, 4, 5, 6, 7, 8]
.
Input: arr = [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Input: arr = [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].
3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 109
use std::collections::HashMap;
impl Solution {
pub fn len_longest_fib_subseq(arr: Vec<i32>) -> i32 {
let mut lengths = HashMap::new();
let last = *arr.last().unwrap();
let mut ret = 0;
for i in 1..arr.len() {
for j in 0..i {
if arr[i] - arr[j] < arr[j] {
let x = *lengths.get(&(arr[i] - arr[j], arr[j])).unwrap_or(&1);
if x > 1 {
lengths.insert((arr[j], arr[i]), x + 1);
ret = ret.max(x + 1);
} else if arr[i] + arr[j] <= last {
lengths.insert((arr[j], arr[i]), 2);
}
} else if arr[i] + arr[j] <= last {
lengths.insert((arr[j], arr[i]), 2);
}
}
}
ret
}
}