-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_baselines.py
189 lines (143 loc) · 6.3 KB
/
eval_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import argparse
from tqdm import tqdm
import torch
import pandas as pd
# from lightglue.utils import load_image
from configs.default import get_cfg_defaults
from datasets import dataset_dict
from baselines.pose import PoseRecover
from utils.metrics import relative_pose_error, rotation_angular_error, error_auc, add, adi, compute_continuous_auc
def main(args):
config = get_cfg_defaults()
config.merge_from_file(args.config)
task = config.DATASET.TASK
dataset = config.DATASET.DATA_SOURCE
# try:
# data_root = config.DATASET.TEST.DATA_ROOT
# except:
# data_root = config.DATASET.DATA_ROOT
build_fn = dataset_dict[task][dataset]
testset = build_fn('test', config)
testloader = torch.utils.data.DataLoader(testset, batch_size=1)
device = args.device
img_resize = args.resize
poseRec = PoseRecover(matcher=args.matcher, solver=args.solver, img_resize=img_resize, device=device)
preprocess_times, extract_times, match_times, recover_times = [], [], [], []
R_errs, t_errs = [], []
ts_errs = []
adds, adis = [], []
for i, data in enumerate(tqdm(testloader)):
if dataset == 'ho3d' and args.obj_name is not None and data['objName'][0] != args.obj_name:
continue
image0, image1 = data['images'][0].to(device)
# if dataset == 'megadepth':
# image0 = load_image(os.path.join(data_root, data['pair_names'][0][0])).to(device)
# image1 = load_image(os.path.join(data_root, data['pair_names'][1][0])).to(device)
# else:
# image0, image1 = data['images'][0].to(device)
bbox0, bbox1 = None, None
if task == 'object':
bbox0, bbox1 = data['bboxes'][0]
x1, y1, x2, y2 = bbox0
u1, v1, u2, v2 = bbox1
image0 = image0[:, y1:y2, x1:x2]
image1 = image1[:, v1:v2, u1:u2]
mask0, mask1 = None, None
if args.mask:
mask0, mask1 = data['masks'][0].to(device)
depth0, depth1 = None, None
if args.depth:
depth0, depth1 = data['depths'][0]
K0, K1 = data['intrinsics'][0]
T = torch.eye(4)
T[:3, :3] = data['rotation'][0]
T[:3, 3] = data['translation'][0]
T = T.numpy()
R, t, points0, points1, preprocess_time, extract_time, match_time, recover_time = poseRec.recover(image0, image1, K0, K1, bbox0, bbox1, mask0, mask1, depth0, depth1)
preprocess_times.append(preprocess_time)
extract_times.append(extract_time)
match_times.append(match_time)
recover_times.append(recover_time)
if np.isnan(R).any():
R_err = 180
R = np.identity(3)
t_err = 180
t = np.array([0., 0., 0.])
else:
t_err, R_err = relative_pose_error(T, R, t, ignore_gt_t_thr=0.0)
R_errs.append(R_err)
t_errs.append(t_err)
if args.depth:
t = np.nan_to_num(t)
ts_errs.append(torch.tensor(T[:3, 3] - t).norm(2))
if task == 'object':
if np.isnan(R).any():
adds.append(1.)
adis.append(1.)
else:
adds.append(add(R, t, T[:3, :3], T[:3, 3], data['point_cloud'][0].numpy()))
adis.append(adi(R, t, T[:3, :3], T[:3, 3], data['point_cloud'][0].numpy()))
metrics = []
values = []
preprocess_times = np.array(preprocess_time) * 1000
extract_times = np.array(extract_time) * 1000
match_times = np.array(match_times) * 1000
recover_times = np.array(recover_time) * 1000
metrics.append('Extracting Time (ms)')
values.append(f'{np.mean(extract_times):.1f}')
metrics.append('Matching Time (ms)')
values.append(f'{np.mean(match_times):.1f}')
metrics.append('Recovering Time (ms)')
values.append(f'{np.mean(recover_times):.1f}')
metrics.append('Total Time (ms)')
values.append(f'{np.mean(extract_times) + np.mean(match_times) + np.mean(recover_times):.1f}')
# pose auc
angular_thresholds = [5, 10, 20]
pose_errors = np.max(np.stack([R_errs, t_errs]), axis=0)
aucs = error_auc(pose_errors, angular_thresholds, mode='Pose estimation') # (auc@5, auc@10, auc@20)
for k in aucs:
metrics.append(k)
values.append(f'{aucs[k] * 100:.2f}')
R_errs = torch.tensor(R_errs)
t_errs = torch.tensor(t_errs)
metrics.append('Rotation Avg. Error (°)')
values.append(f'{R_errs.mean():.2f}')
metrics.append('Rotation Med. Error (°)')
values.append(f'{R_errs.median():.2f}')
metrics.append('Rotation @30° ACC')
values.append(f'{(R_errs < 30).float().mean() * 100:.1f}')
metrics.append('Rotation @15° ACC')
values.append(f'{(R_errs < 15).float().mean() * 100:.1f}')
if args.depth:
ts_errs = torch.tensor(ts_errs)
metrics.append('Translation Avg. Error (m)')
values.append(f'{ts_errs.mean():.4f}')
metrics.append('Translation Med. Error (m)')
values.append(f'{ts_errs.median():.4f}')
metrics.append('Translation @1m ACC')
values.append(f'{(ts_errs < 1.0).float().mean() * 100:.1f}')
metrics.append('Translation @10cm ACC')
values.append(f'{(ts_errs < 0.1).float().mean() * 100:.1f}')
if task == 'object':
metrics.append('Object ADD')
values.append(f'{compute_continuous_auc(adds, np.linspace(0.0, 0.1, 1000)) * 100:.1f}')
metrics.append('Object ADD-S')
values.append(f'{compute_continuous_auc(adis, np.linspace(0.0, 0.1, 1000)) * 100:.1f}')
res = pd.DataFrame({'Metrics': metrics, 'Values': values})
print(res)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='.yaml configure file path')
parser.add_argument('matcher', type=str)
parser.add_argument('--solver', type=str, default='procrustes')
parser.add_argument('--resize', type=int, default=None)
parser.add_argument('--depth', action='store_true')
parser.add_argument('--mask', action='store_true')
parser.add_argument('--obj_name', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda:0')
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args)