-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathece797_AdaBoostScan.m
72 lines (66 loc) · 1.85 KB
/
ece797_AdaBoostScan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
%% HW2 - Part2: Facial Recognition
%% INIT
close all;
%% Load eigenface
s = [32 64 48 96 128];
shape = vision.ShapeInserter('Shape','Rectangles', ...
'BorderColor','Custom', ...
'CustomBorderColor',uint8(255));
load('eigfaces.mat');
eigface = imresize(eigface,[s(sn) s(sn)]);
A=eigface-mean(eigface(:));
E = A/norm(A(:));
[nrows ncols] = size(E);
imPath = 'group_photos/';
imType = '*.jpg';
list = dir([imPath imType]);
n=1;
% for n=1:length(list)
image = imread([imPath list(n).name]);
if(size(image)>2);
image = squeeze(mean(image,3));
end
m = zeros(size(image));
[P,Q] = size(image);
[M,N] = size(E);
for i = 1:(P-N)
for j = 1:(Q-M)
patch = double(histeq(uint8(image(i:i+N-1,j:j+M-1))));
patch = imresize(patch,[64 64]);
patch = patch-mean(patch(:));
patch = patch/norm(patch(:));
W = zeros(1,1+size(eigfaces,2));
I = 0;
for p=1:K
% parameterize each patch
W(p) = eigfaces(:,p)'*patch(:);
I = I+W(p)*eigfaces(:,p);
end
W(end) = sum((I-patch(:)).^2)/length(patch(:));
Htest=0;
for p=1:length(ht)
if(side(h_dim(p))==1)
Hx = 2*(W(h_dim(p)) > ht(p))-1; % faces are above threshold
else
Hx = 2*(W(h_dim(p)) < ht(p))-1; % faces are below threshold
end
Htest = Htest + at(p)*Hx;
m(i,j) = sign(Htest);
end
end
i
end
% m=eigfaceScan_ren(E,image);
figure, imagesc(m);
% figure, imshow(image*255);
% shape = vision.ShapeInserter('Shape','Rectangles', ...
% 'BorderColor','Custom', ...
% 'CustomBorderColor',uint8([255 0 0]));
% c = [size(image,1) size(image,2)];
%
% [y,x] = find(min(m(:))==m);
%
%
% J = step(shape,image,uint32([540 60 ncols nrows]));
% figure; imshow(J);
%