forked from square/crossfilter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesseract.js
1177 lines (1018 loc) · 36.4 KB
/
tesseract.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(function(exports){
tesseract.version = "1.0.1";
function tesseract_identity(d) {
return d;
}
tesseract.permute = permute;
function permute(array, index) {
for (var i = 0, n = index.length, copy = new Array(n); i < n; ++i) {
copy[i] = array[index[i]];
}
return copy;
}
var bisect = tesseract.bisect = bisect_by(tesseract_identity);
bisect.by = bisect_by;
function bisect_by(f) {
// Locate the insertion point for x in a to maintain sorted order. The
// arguments lo and hi may be used to specify a subset of the array which
// should be considered; by default the entire array is used. If x is already
// present in a, the insertion point will be before (to the left of) any
// existing entries. The return value is suitable for use as the first
// argument to `array.splice` assuming that a is already sorted.
//
// The returned insertion point i partitions the array a into two halves so
// that all v < x for v in a[lo:i] for the left side and all v >= x for v in
// a[i:hi] for the right side.
function bisectLeft(a, x, lo, hi) {
while (lo < hi) {
var mid = lo + hi >> 1;
if (f(a[mid]) < x) lo = mid + 1;
else hi = mid;
}
return lo;
}
// Similar to bisectLeft, but returns an insertion point which comes after (to
// the right of) any existing entries of x in a.
//
// The returned insertion point i partitions the array into two halves so that
// all v <= x for v in a[lo:i] for the left side and all v > x for v in
// a[i:hi] for the right side.
function bisectRight(a, x, lo, hi) {
while (lo < hi) {
var mid = lo + hi >> 1;
if (x < f(a[mid])) hi = mid;
else lo = mid + 1;
}
return lo;
}
bisectRight.right = bisectRight;
bisectRight.left = bisectLeft;
return bisectRight;
}
var heap = tesseract.heap = heap_by(tesseract_identity);
heap.by = heap_by;
function heap_by(f) {
// Builds a binary heap within the specified array a[lo:hi]. The heap has the
// property such that the parent a[lo+i] is always less than or equal to its
// two children: a[lo+2*i+1] and a[lo+2*i+2].
function heap(a, lo, hi) {
var n = hi - lo,
i = (n >>> 1) + 1;
while (--i > 0) sift(a, i, n, lo);
return a;
}
// Sorts the specified array a[lo:hi] in descending order, assuming it is
// already a heap.
function sort(a, lo, hi) {
var n = hi - lo,
t;
while (--n > 0) t = a[lo], a[lo] = a[lo + n], a[lo + n] = t, sift(a, 1, n, lo);
return a;
}
// Sifts the element a[lo+i-1] down the heap, where the heap is the contiguous
// slice of array a[lo:lo+n]. This method can also be used to update the heap
// incrementally, without incurring the full cost of reconstructing the heap.
function sift(a, i, n, lo) {
var d = a[--lo + i],
x = f(d),
child;
while ((child = i << 1) <= n) {
if (child < n && f(a[lo + child]) > f(a[lo + child + 1])) child++;
if (x <= f(a[lo + child])) break;
a[lo + i] = a[lo + child];
i = child;
}
a[lo + i] = d;
}
heap.sort = sort;
return heap;
}
var heapselect = tesseract.heapselect = heapselect_by(tesseract_identity);
heapselect.by = heapselect_by;
function heapselect_by(f) {
var heap = heap_by(f);
// Returns a new array containing the top k elements in the array a[lo:hi].
// The returned array is not sorted, but maintains the heap property. If k is
// greater than hi - lo, then fewer than k elements will be returned. The
// order of elements in a is unchanged by this operation.
function heapselect(a, lo, hi, k) {
var queue = new Array(k = Math.min(hi - lo, k)),
min,
i,
x,
d;
for (i = 0; i < k; ++i) queue[i] = a[lo++];
heap(queue, 0, k);
if (lo < hi) {
min = f(queue[0]);
do {
if (x = f(d = a[lo]) > min) {
queue[0] = d;
min = f(heap(queue, 0, k)[0]);
}
} while (++lo < hi);
}
return queue;
}
return heapselect;
}
var insertionsort = tesseract.insertionsort = insertionsort_by(tesseract_identity);
insertionsort.by = insertionsort_by;
function insertionsort_by(f) {
function insertionsort(a, lo, hi) {
for (var i = lo + 1; i < hi; ++i) {
for (var j = i, t = a[i], x = f(t); j > lo && f(a[j - 1]) > x; --j) {
a[j] = a[j - 1];
}
a[j] = t;
}
return a;
}
return insertionsort;
}
// Algorithm designed by Vladimir Yaroslavskiy.
// Implementation based on the Dart project; see lib/dart/LICENSE for details.
var quicksort = tesseract.quicksort = quicksort_by(tesseract_identity);
quicksort.by = quicksort_by;
function quicksort_by(f) {
var insertionsort = insertionsort_by(f);
function sort(a, lo, hi) {
return (hi - lo < quicksort_sizeThreshold
? insertionsort
: quicksort)(a, lo, hi);
}
function quicksort(a, lo, hi) {
// Compute the two pivots by looking at 5 elements.
var sixth = (hi - lo) / 6 | 0,
i1 = lo + sixth,
i5 = hi - 1 - sixth,
i3 = lo + hi - 1 >> 1, // The midpoint.
i2 = i3 - sixth,
i4 = i3 + sixth;
var e1 = a[i1], x1 = f(e1),
e2 = a[i2], x2 = f(e2),
e3 = a[i3], x3 = f(e3),
e4 = a[i4], x4 = f(e4),
e5 = a[i5], x5 = f(e5);
// Sort the selected 5 elements using a sorting network.
if (x1 > x2) t = e1, e1 = e2, e2 = t, t = x1, x1 = x2, x2 = t;
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
if (x1 > x3) t = e1, e1 = e3, e3 = t, t = x1, x1 = x3, x3 = t;
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
if (x1 > x4) t = e1, e1 = e4, e4 = t, t = x1, x1 = x4, x4 = t;
if (x3 > x4) t = e3, e3 = e4, e4 = t, t = x3, x3 = x4, x4 = t;
if (x2 > x5) t = e2, e2 = e5, e5 = t, t = x2, x2 = x5, x5 = t;
if (x2 > x3) t = e2, e2 = e3, e3 = t, t = x2, x2 = x3, x3 = t;
if (x4 > x5) t = e4, e4 = e5, e5 = t, t = x4, x4 = x5, x5 = t;
var pivot1 = e2, pivotValue1 = x2,
pivot2 = e4, pivotValue2 = x4;
// e2 and e4 have been saved in the pivot variables. They will be written
// back, once the partitioning is finished.
a[i1] = e1;
a[i2] = a[lo];
a[i3] = e3;
a[i4] = a[hi - 1];
a[i5] = e5;
var less = lo + 1, // First element in the middle partition.
great = hi - 2; // Last element in the middle partition.
// Note that for value comparison, <, <=, >= and > coerce to a primitive via
// Object.prototype.valueOf; == and === do not, so in order to be consistent
// with natural order (such as for Date objects), we must do two compares.
var pivotsEqual = pivotValue1 <= pivotValue2 && pivotValue1 >= pivotValue2;
if (pivotsEqual) {
// Degenerated case where the partitioning becomes a dutch national flag
// problem.
//
// [ | < pivot | == pivot | unpartitioned | > pivot | ]
// ^ ^ ^ ^ ^
// left less k great right
//
// a[left] and a[right] are undefined and are filled after the
// partitioning.
//
// Invariants:
// 1) for x in ]left, less[ : x < pivot.
// 2) for x in [less, k[ : x == pivot.
// 3) for x in ]great, right[ : x > pivot.
for (var k = less; k <= great; ++k) {
var ek = a[k], xk = f(ek);
if (xk < pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
++less;
} else if (xk > pivotValue1) {
// Find the first element <= pivot in the range [k - 1, great] and
// put [:ek:] there. We know that such an element must exist:
// When k == less, then el3 (which is equal to pivot) lies in the
// interval. Otherwise a[k - 1] == pivot and the search stops at k-1.
// Note that in the latter case invariant 2 will be violated for a
// short amount of time. The invariant will be restored when the
// pivots are put into their final positions.
while (true) {
var greatValue = f(a[great]);
if (greatValue > pivotValue1) {
great--;
// This is the only location in the while-loop where a new
// iteration is started.
continue;
} else if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
break;
} else {
a[k] = a[great];
a[great--] = ek;
// Note: if great < k then we will exit the outer loop and fix
// invariant 2 (which we just violated).
break;
}
}
}
}
} else {
// We partition the list into three parts:
// 1. < pivot1
// 2. >= pivot1 && <= pivot2
// 3. > pivot2
//
// During the loop we have:
// [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned | > pivot2 | ]
// ^ ^ ^ ^ ^
// left less k great right
//
// a[left] and a[right] are undefined and are filled after the
// partitioning.
//
// Invariants:
// 1. for x in ]left, less[ : x < pivot1
// 2. for x in [less, k[ : pivot1 <= x && x <= pivot2
// 3. for x in ]great, right[ : x > pivot2
for (var k = less; k <= great; k++) {
var ek = a[k], xk = f(ek);
if (xk < pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
++less;
} else {
if (xk > pivotValue2) {
while (true) {
var greatValue = f(a[great]);
if (greatValue > pivotValue2) {
great--;
if (great < k) break;
// This is the only location inside the loop where a new
// iteration is started.
continue;
} else {
// a[great] <= pivot2.
if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
} else {
// a[great] >= pivot1.
a[k] = a[great];
a[great--] = ek;
}
break;
}
}
}
}
}
}
// Move pivots into their final positions.
// We shrunk the list from both sides (a[left] and a[right] have
// meaningless values in them) and now we move elements from the first
// and third partition into these locations so that we can store the
// pivots.
a[lo] = a[less - 1];
a[less - 1] = pivot1;
a[hi - 1] = a[great + 1];
a[great + 1] = pivot2;
// The list is now partitioned into three partitions:
// [ < pivot1 | >= pivot1 && <= pivot2 | > pivot2 ]
// ^ ^ ^ ^
// left less great right
// Recursive descent. (Don't include the pivot values.)
sort(a, lo, less - 1);
sort(a, great + 2, hi);
if (pivotsEqual) {
// All elements in the second partition are equal to the pivot. No
// need to sort them.
return a;
}
// In theory it should be enough to call _doSort recursively on the second
// partition.
// The Android source however removes the pivot elements from the recursive
// call if the second partition is too large (more than 2/3 of the list).
if (less < i1 && great > i5) {
var lessValue, greatValue;
while ((lessValue = f(a[less])) <= pivotValue1 && lessValue >= pivotValue1) ++less;
while ((greatValue = f(a[great])) <= pivotValue2 && greatValue >= pivotValue2) --great;
// Copy paste of the previous 3-way partitioning with adaptions.
//
// We partition the list into three parts:
// 1. == pivot1
// 2. > pivot1 && < pivot2
// 3. == pivot2
//
// During the loop we have:
// [ == pivot1 | > pivot1 && < pivot2 | unpartitioned | == pivot2 ]
// ^ ^ ^
// less k great
//
// Invariants:
// 1. for x in [ *, less[ : x == pivot1
// 2. for x in [less, k[ : pivot1 < x && x < pivot2
// 3. for x in ]great, * ] : x == pivot2
for (var k = less; k <= great; k++) {
var ek = a[k], xk = f(ek);
if (xk <= pivotValue1 && xk >= pivotValue1) {
if (k !== less) {
a[k] = a[less];
a[less] = ek;
}
less++;
} else {
if (xk <= pivotValue2 && xk >= pivotValue2) {
while (true) {
var greatValue = f(a[great]);
if (greatValue <= pivotValue2 && greatValue >= pivotValue2) {
great--;
if (great < k) break;
// This is the only location inside the loop where a new
// iteration is started.
continue;
} else {
// a[great] < pivot2.
if (greatValue < pivotValue1) {
// Triple exchange.
a[k] = a[less];
a[less++] = a[great];
a[great--] = ek;
} else {
// a[great] == pivot1.
a[k] = a[great];
a[great--] = ek;
}
break;
}
}
}
}
}
}
// The second partition has now been cleared of pivot elements and looks
// as follows:
// [ * | > pivot1 && < pivot2 | * ]
// ^ ^
// less great
// Sort the second partition using recursive descent.
// The second partition looks as follows:
// [ * | >= pivot1 && <= pivot2 | * ]
// ^ ^
// less great
// Simply sort it by recursive descent.
return sort(a, less, great + 1);
}
return sort;
}
var quicksort_sizeThreshold = 32;
var tesseract_array8 = tesseract_arrayUntyped,
tesseract_array16 = tesseract_arrayUntyped,
tesseract_array32 = tesseract_arrayUntyped,
tesseract_arrayLengthen = tesseract_identity,
tesseract_arrayWiden = tesseract_identity;
if (typeof Uint8Array !== "undefined") {
tesseract_array8 = function(n) { return new Uint8Array(n); };
tesseract_array16 = function(n) { return new Uint16Array(n); };
tesseract_array32 = function(n) { return new Uint32Array(n); };
tesseract_arrayLengthen = function(array, length) {
var copy = new array.constructor(length);
copy.set(array);
return copy;
};
tesseract_arrayWiden = function(array, width) {
var copy;
switch (width) {
case 16: copy = tesseract_array16(array.length); break;
case 32: copy = tesseract_array32(array.length); break;
default: throw new Error("invalid array width!");
}
copy.set(array);
return copy;
};
}
function tesseract_arrayUntyped(n) {
return new Array(n);
}
function tesseract_filterExact(bisect, value) {
return function(values) {
var n = values.length;
return [bisect.left(values, value, 0, n), bisect.right(values, value, 0, n)];
};
}
function tesseract_filterRange(bisect, range) {
var min = range[0],
max = range[1];
return function(values) {
var n = values.length;
return [bisect.left(values, min, 0, n), bisect.left(values, max, 0, n)];
};
}
function tesseract_filterAll(values) {
return [0, values.length];
}
function tesseract_null() {
return null;
}
function tesseract_zero() {
return 0;
}
function tesseract_reduceIncrement(p) {
return p + 1;
}
function tesseract_reduceDecrement(p) {
return p - 1;
}
function tesseract_reduceAdd(f) {
return function(p, v) {
return p + +f(v);
};
}
function tesseract_reduceSubtract(f) {
return function(p, v) {
return p - f(v);
};
}
exports.tesseract = tesseract;
function tesseract() {
var tesseract = {
add: add,
dimension: dimension,
groupAll: groupAll,
size: size
};
var data = [], // the records
n = 0, // the number of records; data.length
m = 0, // number of dimensions in use
M = 8, // number of dimensions that can fit in `filters`
filters = tesseract_array8(0), // M bits per record; 1 is filtered out
filterListeners = [], // when the filters change
dataListeners = []; // when data is added
// Adds the specified new records to this tesseract.
function add(newData) {
var n0 = n,
n1 = newData.length;
// If there's actually new data to add…
// Merge the new data into the existing data.
// Lengthen the filter bitset to handle the new records.
// Notify listeners (dimensions and groups) that new data is available.
if (n1) {
data = data.concat(newData);
filters = tesseract_arrayLengthen(filters, n += n1);
dataListeners.forEach(function(l) { l(newData, n0, n1); });
}
return tesseract;
}
// Adds a new dimension with the specified value accessor function.
function dimension(value) {
var dimension = {
filter: filter,
filterExact: filterExact,
filterRange: filterRange,
filterAll: filterAll,
top: top,
group: group,
groupAll: groupAll
};
var one = 1 << m++, // bit mask, e.g., 00001000
zero = ~one, // inverted one, e.g., 11110111
values, // sorted, cached array
index, // value rank ↦ object id
newValues, // temporary array storing newly-added values
newIndex, // temporary array storing newly-added index
sort = quicksort_by(function(i) { return newValues[i]; }),
refilter = tesseract_filterAll, // for recomputing filter
indexListeners = [], // when data is added
lo0 = 0,
hi0 = 0;
// Updating a dimension is a two-stage process. First, we must update the
// associated filters for the newly-added records. Once all dimensions have
// updated their filters, the groups are notified to update.
dataListeners.unshift(preAdd);
dataListeners.push(postAdd);
// Incorporate any existing data into this dimension, and make sure that the
// filter bitset is wide enough to handle the new dimension.
if (m > M) filters = tesseract_arrayWiden(filters, M <<= 1);
preAdd(data, 0, n);
postAdd(data, 0, n);
// Incorporates the specified new records into this dimension.
// This function is responsible for updating filters, values, and index.
function preAdd(newData, n0, n1) {
// Permute new values into natural order using a sorted index.
newValues = newData.map(value);
newIndex = sort(tesseract_range(n1), 0, n1);
newValues = permute(newValues, newIndex);
// Bisect newValues to determine which new records are selected.
var bounds = refilter(newValues), lo1 = bounds[0], hi1 = bounds[1], i;
for (i = 0; i < lo1; ++i) filters[newIndex[i] + n0] |= one;
for (i = hi1; i < n1; ++i) filters[newIndex[i] + n0] |= one;
// If this dimension previously had no data, then we don't need to do the
// more expensive merge operation; use the new values and index as-is.
if (!n0) {
values = newValues;
index = newIndex;
lo0 = lo1;
hi0 = hi1;
return;
}
var oldValues = values,
oldIndex = index,
i0 = 0,
i1 = 0;
// Otherwise, create new arrays into which to merge new and old.
values = new Array(n);
index = tesseract_index(n, n);
// Merge the old and new sorted values, and old and new index.
for (i = 0; i0 < n0 && i1 < n1; ++i) {
if (oldValues[i0] < newValues[i1]) {
values[i] = oldValues[i0];
index[i] = oldIndex[i0++];
} else {
values[i] = newValues[i1];
index[i] = newIndex[i1++] + n0;
}
}
// Add any remaining old values.
for (; i0 < n0; ++i0, ++i) {
values[i] = oldValues[i0];
index[i] = oldIndex[i0];
}
// Add any remaining new values.
for (; i1 < n1; ++i1, ++i) {
values[i] = newValues[i1];
index[i] = newIndex[i1] + n0;
}
// Bisect again to recompute lo0 and hi0.
bounds = refilter(values), lo0 = bounds[0], hi0 = bounds[1];
}
// When all filters have updated, notify index listeners of the new values.
function postAdd(newData, n0, n1) {
indexListeners.forEach(function(l) { l(newValues, newIndex, n0, n1); });
newValues = newIndex = null;
}
// Updates the selected values based on the specified bounds [lo, hi].
// This implementation is used by all the public filter methods.
function filterIndex(bounds) {
var i,
j,
k,
lo1 = bounds[0],
hi1 = bounds[1],
added = [],
removed = [];
// Fast incremental update based on previous lo index.
if (lo1 < lo0) {
for (i = lo1, j = Math.min(lo0, hi1); i < j; ++i) {
filters[k = index[i]] ^= one;
added.push(k);
}
} else if (lo1 > lo0) {
for (i = lo0, j = Math.min(lo1, hi0); i < j; ++i) {
filters[k = index[i]] ^= one;
removed.push(k);
}
}
// Fast incremental update based on previous hi index.
if (hi1 > hi0) {
for (i = Math.max(lo1, hi0), j = hi1; i < j; ++i) {
filters[k = index[i]] ^= one;
added.push(k);
}
} else if (hi1 < hi0) {
for (i = Math.max(lo0, hi1), j = hi0; i < j; ++i) {
filters[k = index[i]] ^= one;
removed.push(k);
}
}
lo0 = lo1;
hi0 = hi1;
filterListeners.forEach(function(l) { l(one, added, removed); });
return dimension;
}
// Filters this dimension using the specified range, value, or null.
// If the range is null, this is equivalent to filterAll.
// If the range is an array, this is equivalent to filterRange.
// Otherwise, this is equivalent to filterExact.
function filter(range) {
return range == null
? filterAll() : Array.isArray(range)
? filterRange(range)
: filterExact(range);
}
// Filters this dimension to select the exact value.
function filterExact(value) {
return filterIndex((refilter = tesseract_filterExact(bisect, value))(values));
}
// Filters this dimension to select the specified range [lo, hi].
// The lower bound is inclusive, and the upper bound is exclusive.
function filterRange(range) {
return filterIndex((refilter = tesseract_filterRange(bisect, range))(values));
}
// Clears any filters on this dimension.
function filterAll() {
return filterIndex((refilter = tesseract_filterAll)(values));
}
// Returns the top K selected records, based on this dimension's order.
// Note: observes this dimension's filter, unlike group and groupAll.
function top(k) {
var array = [],
i = hi0,
j;
while (--i >= lo0 && k > 0) {
if (!filters[j = index[i]]) {
array.push(data[j]);
--k;
}
}
return array;
}
// Adds a new group to this dimension, using the specified key function.
function group(key) {
var group = {
top: top,
all: all,
reduce: reduce,
reduceCount: reduceCount,
reduceSum: reduceSum,
order: order,
orderNatural: orderNatural,
size: size
};
var groups, // array of {key, value}
groupIndex, // object id ↦ group id
groupWidth = 8,
groupCapacity = tesseract_capacity(groupWidth),
k = 0, // cardinality
select,
heap,
reduceAdd,
reduceRemove,
reduceInitial,
update = tesseract_null,
reset = tesseract_null,
resetNeeded = true;
if (arguments.length < 1) key = tesseract_identity;
// The group listens to the tesseract for when any dimension changes, so
// that it can update the associated reduce values. It must also listen to
// the parent dimension for when data is added, and compute new keys.
filterListeners.push(update);
indexListeners.push(add);
// Incorporate any existing data into the grouping.
add(values, index, 0, n);
// Incorporates the specified new values into this group.
// This function is responsible for updating groups and groupIndex.
function add(newValues, newIndex, n0, n1) {
var oldGroups = groups,
reIndex = tesseract_index(k, groupCapacity),
add = reduceAdd,
initial = reduceInitial,
k0 = k, // old cardinality
i0 = 0, // index of old group
i1 = 0, // index of new record
j, // object id
g0, // old group
x0, // old key
x1, // new key
g, // group to add
x; // key of group to add
// If a reset is needed, we don't need to update the reduce values.
if (resetNeeded) add = initial = tesseract_null;
// Reset the new groups (k is a lower bound).
// Also, make sure that groupIndex exists and is long enough.
groups = new Array(k), k = 0;
groupIndex = k0 > 1 ? tesseract_arrayLengthen(groupIndex, n) : tesseract_index(n, groupCapacity);
// Get the first old key (x0 of g0), if it exists.
if (k0) x0 = (g0 = oldGroups[0]).key;
// Find the first new key (x1), skipping NaN keys.
while (i1 < n1 && !((x1 = key(newValues[i1])) >= x1)) ++i1;
// While new keys remain…
while (i1 < n1) {
// Determine the lesser of the two current keys; new and old.
// If there are no old keys remaining, then always add the new key.
if (g0 && x0 <= x1) {
g = g0, x = x0;
// Record the new index of the old group.
reIndex[i0] = k;
// Retrieve the next old key.
if (g0 = oldGroups[++i0]) x0 = g0.key;
} else {
g = {key: x1, value: initial()}, x = x1;
}
// Add the lesser group.
groups[k] = g;
// Add any selected records belonging to the added group, while
// advancing the new key and populating the associated group index.
while (!(x1 > x)) {
groupIndex[j = newIndex[i1] + n0] = k;
if (!(filters[j] & zero)) g.value = add(g.value, data[j]);
if (++i1 >= n1) break;
x1 = key(newValues[i1]);
}
groupIncrement();
}
// Add any remaining old groups that were greater than all new keys.
// No incremental reduce is needed; these groups have no new records.
// Also record the new index of the old group.
while (i0 < k0) {
groups[reIndex[i0] = k] = oldGroups[i0++];
groupIncrement();
}
// If we added any new groups before any old groups,
// update the group index of all the old records.
if (k > i0) for (i0 = 0; i0 < n0; ++i0) {
groupIndex[i0] = reIndex[groupIndex[i0]];
}
// Modify the update and reset behavior based on the cardinality.
// If the cardinality is less than or equal to one, then the groupIndex
// is not needed. If the cardinality is zero, then there are no records
// and therefore no groups to update or reset. Note that we also must
// change the registered listener to point to the new method.
j = filterListeners.indexOf(update);
if (k > 1) {
update = updateMany;
reset = resetMany;
} else {
if (k === 1) {
update = updateOne;
reset = resetOne;
} else {
update = tesseract_null;
reset = tesseract_null;
}
groupIndex = null;
}
filterListeners[j] = update;
// Count the number of added groups,
// and widen the group index as needed.
function groupIncrement() {
if (++k === groupCapacity) {
reIndex = tesseract_arrayWiden(reIndex, groupWidth <<= 1);
groupIndex = tesseract_arrayWiden(groupIndex, groupWidth);
groupCapacity = tesseract_capacity(groupWidth);
}
}
}
// Reduces the specified selected or deselected records.
// This function is only used when the cardinality is greater than 1.
function updateMany(filterOne, added, removed) {
if (filterOne === one || resetNeeded) return;
var i,
k,
n;
// Add the added values.
for (i = 0, n = added.length; i < n; ++i) {
if (!(filters[k = added[i]] & zero)) {
g = groups[groupIndex[k]];
g.value = reduceAdd(g.value, data[k]);
}
}
// Remove the removed values.
for (i = 0, n = removed.length; i < n; ++i) {
if ((filters[k = removed[i]] & zero) === filterOne) {
g = groups[groupIndex[k]];
g.value = reduceRemove(g.value, data[k]);
}
}
}
// Reduces the specified selected or deselected records.
// This function is only used when the cardinality is 1.
function updateOne(filterOne, added, removed) {
if (filterOne === one || resetNeeded) return;
var i,
k,
n,
g = groups[0];
// Add the added values.
for (i = 0, n = added.length; i < n; ++i) {
if (!(filters[k = added[i]] & zero)) {
g.value = reduceAdd(g.value, data[k]);
}
}
// Remove the removed values.
for (i = 0, n = removed.length; i < n; ++i) {
if ((filters[k = removed[i]] & zero) === filterOne) {
g.value = reduceRemove(g.value, data[k]);
}
}
}
// Recomputes the group reduce values from scratch.
// This function is only used when the cardinality is greater than 1.
function resetMany() {
var i,
g;
// Reset all group values.
for (i = 0; i < k; ++i) {
groups[i].value = reduceInitial();
}
// Add any selected records.
for (i = 0; i < n; ++i) {
if (!(filters[i] & zero)) {
g = groups[groupIndex[i]];
g.value = reduceAdd(g.value, data[i]);
}
}
}
// Recomputes the group reduce values from scratch.
// This function is only used when the cardinality is 1.
function resetOne() {
var i,
g = groups[0];
// Reset the singleton group values.
g.value = reduceInitial();
// Add any selected records.
for (i = 0; i < n; ++i) {
if (!(filters[i] & zero)) {
g.value = reduceAdd(g.value, data[i]);
}
}
}
// Returns the array of group values, in the dimension's natural order.
function all() {
if (resetNeeded) reset(), resetNeeded = false;
return groups;
}
// Returns a new array containing the top K group values, in reduce order.
function top(k) {
var top = select(all(), 0, groups.length, k);
return heap.sort(top, 0, top.length);
}
// Sets the reduce behavior for this group to use the specified functions.
// This method lazily recomputes the reduce values, waiting until needed.
function reduce(add, remove, initial) {
reduceAdd = add;
reduceRemove = remove;
reduceInitial = initial;
resetNeeded = true;
return group;
}
// A convenience method for reducing by count.
function reduceCount() {
return reduce(tesseract_reduceIncrement, tesseract_reduceDecrement, tesseract_zero);
}