forked from scikit-learn-contrib/imbalanced-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
250 lines (228 loc) · 6.85 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
@InProceedings{ batista2003,
title = {Balancing training data for automated annotation of
keywords: A case study},
author = {Batista, Gustavo E. A. P. A. and Bazzan, Ana L. C. and
Monard, Maria Carolina},
booktitle = {Proceedings of the 2nd Brazilian Workshop on
Bioinformatics},
pages = {10--18},
year = {2003},
month = {Dec.},
address = {Rio de Janeiro, Brazil}
}
@Article{ batista2004,
title = {A study of the behavior of several methods for balancing
machine learning training data},
author = {Batista, Gustavo E. A. P. A. and Prati, Ronaldo C. and
Monard, Maria Carolina},
journal = {ACM Sigkdd Explorations Newsletter},
volume = {6},
number = {1},
pages = {20--29},
year = {2004},
publisher = {ACM}
}
@Article{ chawla2002,
title = {SMOTE: Synthetic minority over-sampling technique},
author = {Chawla, Nitesh V. and Bowyer, Kevin W. and Hall, Lawrence
O. and Kegelmeyer, W. Philip},
journal = {Journal of Artificial Intelligence Research},
volume = {16},
pages = {321--357},
year = {2002}
}
@InProceedings{ han2005,
title = {Borderline-SMOTE: A new over-sampling method in imbalanced
data sets learning},
author = {Han, Hui and Wang, Wen-Yuan and Mao, Bing-Huan},
journal = {Advances in intelligent computing},
pages = {878--887},
year = {2005},
booktitle = {Proceedings of the 1st International Conference on
Intelligent Computing},
month = {Aug.},
address = {Hefei, China}
}
@Article{ hart1968,
title = {The condensed nearest neighbor rule},
author = {Hart, Peter E.},
journal = {IEEE Transactions on Information Theory},
volume = {14},
number = {3},
pages = {515--516},
year = {1968},
publisher = {IEEE}
}
@InProceedings{ he2008,
title = {ADASYN: Adaptive synthetic sampling approach for
imbalanced learning},
author = {He, Haibo and Bai, Yang and Garcia, Edwardo A. and Li,
Shutao},
booktitle = {Proceedings of the 5th IEEE International Joint Conference
on Neural Networks},
pages = {1322--1328},
year = {2008},
organization = {IEEE},
month = {Jun.},
address = {Hong Kong, China}
}
@InProceedings{ kubat1997,
title = {Addressing the curse of imbalanced training sets:
One-sided selection},
author = {Kubat, Miroslav and Matwin, Stan},
booktitle = {Proceedings of the 14th International Conference on
Machine Learning},
volume = {97},
pages = {179--186},
year = {1997},
address = {Nashville, Tennessee, USA},
month = {July}
}
@InProceedings{ laurikkala2001,
title = {Improving identification of difficult small classes by
balancing class distribution},
author = {Laurikkala, Jorma},
journal = {Proceedings of the 8th Conference on Artificial
Intelligence in Medicine in Europe},
pages = {63--66},
address = {Cascais, Portugal},
month = {Jul.},
year = {2001},
publisher = {Springer}
}
@Article{ liu2009,
title = {Exploratory undersampling for class-imbalance learning},
author = {Liu, Xu-Ying and Wu, Jianxin and Zhou, Zhi-Hua},
journal = {IEEE Transactions on Systems, Man, and Cybernetics},
volume = {39},
number = {2},
pages = {539--550},
year = {2009},
publisher = {IEEE}
}
@InProceedings{ mani2003,
title = {kNN approach to unbalanced data distributions: A case
study involving information extraction},
author = {Mani, Inderjeet and Zhang, Jianping},
booktitle = {Proceedings of the Workshop on Learning from Imbalanced
Data Sets},
volume = {126},
year = {2003},
month = {Aug.},
pages = {1--7},
address = {Washington, DC, USA}
}
@InProceedings{ nguyen2009,
title = {Borderline over-sampling for imbalanced data
classification},
author = {Nguyen, Hien M. and Cooper, Eric W. and Kamei, Katsuari},
journal = {Proceedings of the 5th International Workshop on
computational Intelligence and Applications},
pages = {24--29},
year = {2009}
}
@Article{ smith2014,
title = {An instance level analysis of data complexity},
author = {Smith, Michael R. and Martinez, Tony and Giraud-Carrier,
Christophe},
journal = {Machine learning},
volume = {95},
number = {2},
pages = {225--256},
year = {2014},
publisher = {Springer}
}
@Article{ tomek1976a,
title = {Two modifications of CNN},
author = {Tomek, Ivan},
journal = {IEEE Trans. Systems, Man and Cybernetics},
volume = {6},
issue = {6},
pages = {769--772},
year = {1976}
}
@Article{ tomek1976b,
title = {An experiment with the edited nearest-neighbor rule},
author = {Tomek, Ivan},
journal = {IEEE Transactions on Systems, Man, and Cybernetics},
number = {6},
issue = {6},
pages = {448--452},
year = {1976}
}
@Article{ wilson1972,
title = {Asymptotic properties of nearest neighbor rules using
edited data},
author = {Wilson, Dennis L.},
journal = {IEEE Transactions on Systems, Man, and Cybernetics},
volume = {2},
number = {3},
pages = {408--421},
year = {1972},
publisher = {IEEE}
}
@article{chen2004using,
title={Using random forest to learn imbalanced data},
author={Chen, Chao and Liaw, Andy and Breiman, Leo},
journal={University of California, Berkeley},
volume={110},
pages={1--12},
year={2004}
}
@article{torelli2014rose,
author = {Menardi, Giovanna and Torelli, Nicola},
title={Training and assessing classification rules with imbalanced data},
journal={Data Mining and Knowledge Discovery},
volume={28},
pages={92-122},
year={2014},
publisher={Springer},
issue = {1},
issn = {1573-756X},
url = {https://doi.org/10.1007/s10618-012-0295-5},
doi = {10.1007/s10618-012-0295-5}
}
@article{stanfill1986toward,
title={Toward memory-based reasoning},
author={Stanfill, Craig and Waltz, David},
journal={Communications of the ACM},
volume={29},
number={12},
pages={1213--1228},
year={1986},
publisher={ACM New York, NY, USA}
}
@article{wilson1997improved,
title={Improved heterogeneous distance functions},
author={Wilson, D Randall and Martinez, Tony R},
journal={Journal of artificial intelligence research},
volume={6},
pages={1--34},
year={1997}
}
@inproceedings{wang2009diversity,
title={Diversity analysis on imbalanced data sets by using ensemble models},
author={Wang, Shuo and Yao, Xin},
booktitle={2009 IEEE symposium on computational intelligence and data mining},
pages={324--331},
year={2009},
organization={IEEE}
}
@article{hido2009roughly,
title={Roughly balanced bagging for imbalanced data},
author={Hido, Shohei and Kashima, Hisashi and Takahashi, Yutaka},
journal={Statistical Analysis and Data Mining: The ASA Data Science Journal},
volume={2},
number={5-6},
pages={412--426},
year={2009},
publisher={Wiley Online Library}
}
@article{maclin1997empirical,
title={An empirical evaluation of bagging and boosting},
author={Maclin, Richard and Opitz, David},
journal={AAAI/IAAI},
volume={1997},
pages={546--551},
year={1997}
}