-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
79 lines (63 loc) · 2.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2.dnn
import numpy as np
with open("classes.txt", "r") as f:
classes = f.read().split("\n")
colors = np.random.uniform(0, 255, size=(len(classes), 3))
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = "{0} ({1:.2f})".format(classes[class_id], confidence)
color = colors[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
def main():
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX('yolov8n.onnx')
original_image: np.ndarray = cv2.imread('bus.jpg')
[height, width, _] = original_image.shape
length = max((height, width))
image = np.zeros((length, length, 3), np.uint8)
image[0:height, 0:width] = original_image
scale = length / 640
blob = cv2.dnn.blobFromImage(image, scalefactor=1/255, size=(640, 640))
model.setInput(blob)
outputs = model.forward()
outputs = np.array([cv2.transpose(outputs[0])])
rows = outputs.shape[1]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[0][i][4:]
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
if maxScore >= 0.25:
box = [
outputs[0][i][0] - (0.5 * outputs[0][i][2]),
outputs[0][i][1] - (0.5 * outputs[0][i][3]),
outputs[0][i][2],
outputs[0][i][3]
]
boxes.append(box)
scores.append(maxScore)
class_ids.append(maxClassIndex)
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
detections = []
for i in range(len(result_boxes)):
index = result_boxes[i]
box = boxes[index]
detection = {
'class_id': class_ids[index],
'class_name': classes[class_ids[index]],
'confidence': scores[index],
'box': box,
'scale': scale
}
detections.append(detection)
draw_bounding_box(
original_image, class_ids[index], scores[index],
round(box[0] * scale), round(box[1] * scale),
round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale)
)
cv2.imshow('image', original_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
return detections
if __name__ == '__main__':
main()