Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The DLR loss is undefined for classification problems with fewer than 4 classes #70

Open
peck94 opened this issue Sep 6, 2021 · 1 comment

Comments

@peck94
Copy link

peck94 commented Sep 6, 2021

The DLR loss is one of the major innovations of your work and is central to one of the four attacks used in the AutoAttack benchmark, APGD-DLR. However, when I was running tests with your framework on a couple of data sets, I noticed that AutoAttack had a tendency to crash when running the APGD-DLR attack. This is caused by the fact that the DLR loss function as defined in equation (6) of your paper implicitly assumes that the classification problem is composed of at least 3 classes; the targeted version presented in equation (7) assumes at least 4 classes.

This limitation raises a number of concerns which I think should be addressed:

  1. The AutoAttack framework itself currently issues no warning and raises no reasonable exceptions when running experiments on data sets with fewer than four classes. Instead, we get an unintuitive index out of bounds exception which makes no sense to someone unfamiliar with this drawback of the DLR loss.
  2. This problem raises the question of how to run the AutoAttack benchmark on, say, binary classification problems without compromising the results. One obvious "solution" is to exclude the APGD-DLR attack from the suite for such data sets, leaving only the APGD-CE, FAB and Square attacks. However, this obviously makes the evaluation of the models weaker, and may call into question the meaningfulness of the results. Ideally, the DLR loss should be generalized to a form that still makes sense even when there are only two classes.
@fra31
Copy link
Owner

fra31 commented Sep 9, 2021

Hi,

thanks for bringing this up, I've never experimented with datasets with less than 4 classes. I think it makes a lot of sense to raise a warning stating that in such case AA can't be run as in the original version, I'll try to add it soon.

As a possible replacement, I think that the simplest choice would be falling back to the margin loss, although it's not scale invariant. I'll check whether better solutions exist (as I think) and possibly integrate some in the code.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants