Skip to content

Commit

Permalink
simple lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
forked-from-1kasper committed Dec 27, 2023
1 parent 6a01b17 commit c5fdb13
Showing 1 changed file with 9 additions and 0 deletions.
9 changes: 9 additions & 0 deletions GroundZero/Types/Equiv.lean
Original file line number Diff line number Diff line change
Expand Up @@ -994,6 +994,15 @@ namespace Equiv
Π {n : ℕ} (α : Ωⁿ⁺¹(A, a)) (β : Ωⁿ⁺¹(B, b)), bimapΩ f α β = comΩ (apΩ (f a) β) (apΩ (f · b) α)
| Nat.zero, _, _ => bimapCharacterization' f _ _
| Nat.succ n, α, β => @bimapCharacterizationΩ₂ (a = a) (b = b) (f a b = f a b) (bimap f) (idp a) (idp b) n α β

hott lemma apEqIdp {A : Type u} {B : Type v} (f : A → B)
{a : A} (p : a = a) (H : Π x, f x = f a) : ap f p = idp (f a) :=
mapWithHomotopy _ _ H p ⬝ ap (_ ⬝ · ⬝ _) (constmap _) ⬝ idConjRevIfComm _ _ _ (Id.rid _)⁻¹

hott lemma apEqIdΩ {A : Type u} {B : Type v} (f : A → B) {a : A} :
Π {n : ℕ} (α : Ωⁿ(A, a)) (H : Π x, f x = f a), apΩ f α = idΩ (f a) n
| Nat.zero, x, H => H x
| Nat.succ n, α, H => @apEqIdΩ (a = a) (f a = f a) (ap f) (idp a) n α (λ p, apEqIdp f p H)
end Equiv

inductive Resize (A : Type u) : Type (max u v)
Expand Down

0 comments on commit c5fdb13

Please sign in to comment.