From 3bc61b252773fe9cbe39ea7e80d69a4b5447c3b2 Mon Sep 17 00:00:00 2001 From: Siegmentation Fault Date: Tue, 2 Jan 2024 18:51:11 +0700 Subject: [PATCH] style --- GroundZero/Algebra/Group/Differential.lean | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/GroundZero/Algebra/Group/Differential.lean b/GroundZero/Algebra/Group/Differential.lean index d115cd7..c8d1b3e 100644 --- a/GroundZero/Algebra/Group/Differential.lean +++ b/GroundZero/Algebra/Group/Differential.lean @@ -17,21 +17,21 @@ universe u v u' v' w namespace Group variable {G : Group} - hott def imImplKer {φ : Hom G G} (H : φ ⋅ φ = 0) : (im φ).set ⊆ (ker φ).set := + hott definition imImplKer {φ : Hom G G} (H : φ ⋅ φ = 0) : (im φ).set ⊆ (ker φ).set := begin intro x; fapply HITs.Merely.rec; apply G.hset; intro ⟨y, p⟩; change _ = _; transitivity; apply ap _ (Id.inv p); apply @idhom _ _ _ _ _ (φ ⋅ φ) 0; apply H end - noncomputable hott def boundaryOfBoundary {φ : Hom G G} + noncomputable hott lemma boundaryOfBoundary {φ : Hom G G} (p : (im φ).set ⊆ (ker φ).set) : φ ⋅ φ = 0 := begin fapply Hom.funext; intro x; apply p; apply HITs.Merely.elem; existsi x; reflexivity end - noncomputable hott def boundaryEqv (φ : Hom G G) : + noncomputable hott lemma boundaryEqv (φ : Hom G G) : (φ ⋅ φ = 0) ≃ ((im φ).set ⊆ (ker φ).set) := begin apply Structures.propEquivLemma; @@ -40,20 +40,20 @@ namespace Group end end Group -def Diff := Σ (G : Abelian) (δ : Abelian.Hom G G), δ ⋅ δ = 0 +hott definition Diff := Σ (G : Abelian) (δ : Abelian.Hom G G), δ ⋅ δ = 0 -- Accessors -hott def Diff.abelian (G : Diff) := G.1 -hott def Diff.group (G : Diff) := G.abelian.group +hott definition Diff.abelian (G : Diff) := G.1 +hott definition Diff.group (G : Diff) := G.abelian.group -hott def Diff.δ (G : Diff) : Group.Hom G.group G.group := G.2.1 -hott def Diff.sqr (G : Diff) : G.δ ⋅ G.δ = 0 := G.2.2 +hott definition Diff.δ (G : Diff) : Group.Hom G.group G.group := G.2.1 +hott definition Diff.sqr (G : Diff) : G.δ ⋅ G.δ = 0 := G.2.2 namespace Diff - open GroundZero.Algebra.Group (ker) + open GroundZero.Algebra.Group (im ker) variable (G : Diff) - hott def univ : (Group.im G.δ).set ⊆ (ker G.δ).set := + hott lemma univ : (Group.im G.δ).set ⊆ (ker G.δ).set := Group.imImplKer G.sqr end Diff