forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conv_op.h
101 lines (87 loc) · 3.08 KB
/
conv_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#ifndef CAFFE2_OPERATORS_CONV_OP_H_
#define CAFFE2_OPERATORS_CONV_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_pool_op_base.h"
C10_DECLARE_bool(caffe2_force_shared_col_buffer);
namespace caffe2 {
template <typename T, class Context>
class ConvOp final : public ConvPoolOpBase<Context> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(Context);
ConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<Context>(operator_def, ws) {
// Since this is the default convolution implementation, we will
// use CAFFE_ENFORCE instead of OPERATOR_NEEDS_FEATURE.
CAFFE_ENFORCE(
(group_ == 1 || order_ == StorageOrder::NCHW ||
std::is_same<Context, CPUContext>::value),
"Group convolution only supports NCHW order or CPUContext right now.");
// Create shared buffer mutex in the constructor
// to avoid race-condition in DAGNet.
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
createSharedBuffer<Context>(ws_);
}
}
~ConvOp() {}
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
private:
bool Run1x1ConvOnDeviceWithOrderNCHW(
const int N,
const int C,
const int HxW,
const int M,
const T* X,
const T* filter,
const T* bias,
T* Y);
bool Run1x1ConvOnDeviceWithOrderNHWC(
const int N,
const int C,
const int HxW,
const int M,
const T* X,
const T* filter,
const T* bias,
T* Y);
Tensor col_buffer_{Context::GetDeviceType()};
Tensor bias_multiplier_{Context::GetDeviceType()};
Tensor img_shape_device_{Context::GetDeviceType()};
Tensor col_buffer_shape_device_{Context::GetDeviceType()};
// Input: X, W, b
// Output: Y
INPUT_TAGS(INPUT, FILTER, BIAS);
};
template <typename T, class Context>
class ConvGradientOp final : public ConvPoolOpBase<Context> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(Context);
ConvGradientOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<Context>(operator_def, ws),
no_bias_(this->template GetSingleArgument<int>("no_bias", 0)) {
CAFFE_ENFORCE(
!(no_bias_ && OutputSize() == 3),
"If bias is not present, you should not have 3 grad output.");
CAFFE_ENFORCE(
(group_ == 1 || order_ == StorageOrder::NCHW ||
std::is_same<Context, CPUContext>::value),
"Group convolution only supports NCHW order or CPUContext right now.");
}
~ConvGradientOp() {}
bool RunOnDeviceWithOrderNCHW() override;
bool RunOnDeviceWithOrderNHWC() override;
private:
Tensor col_buffer_{Context::GetDeviceType()};
Tensor bias_multiplier_{Context::GetDeviceType()};
Tensor img_shape_device_{Context::GetDeviceType()};
Tensor col_buffer_shape_device_{Context::GetDeviceType()};
bool no_bias_;
// input: X, W, dY
// output: dW, db, and optionally dX
INPUT_TAGS(INPUT, FILTER, OUTPUT_GRAD);
OUTPUT_TAGS(FILTER_GRAD, BIAS_OR_INPUT_GRAD, INPUT_GRAD);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONV_OP_H_