forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialAdaptiveAveragePooling.cu
197 lines (159 loc) · 5.44 KB
/
SpatialAdaptiveAveragePooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include "THCUNN.h"
#include "THCTensor.hpp"
#include "TH/THHalf.h"
#include "THCHalfAutoNumerics.cuh"
#include "THCAtomics.cuh"
#define START_IND(a,b,c) (int)floor((float)(a * c) / b)
#define END_IND(a,b,c) (int)ceil((float)((a + 1) * c) / b)
// #define START_IND(a,b,c) a * c / b
// #define END_IND(a,b,c) (a + 1) * c / b + ((a + 1) * c % b > 0)?1:0
#define CUDA_MAX_THREADS 1024 // this is safe, in reality 256 is our limit
// 4d tensor B x D x H x W
// All kernels view batch dim B and feature dim D as collapsed.
/*
* Description:
* this function adaptively average pools an input 4D tensor along dimensions 2 and 3
* 4D input, 4D output
*/
template <typename T>
__global__ void adaptiveaveragepool(T *input, T *output,
int isizeH, int isizeW,
int osizeH, int osizeW,
int64_t istrideD, int64_t istrideH, int64_t istrideW)
{
// iterators on output pixels
int oh, ow;
// select input/output plane based on thread/block ID
int o_plane = blockIdx.x;
int i_plane = o_plane;
output = output + o_plane*osizeH*osizeW;
input = input + i_plane*istrideD;
int ostartH = blockDim.y*blockIdx.y + threadIdx.y;
int oendH = osizeH;
const int ostepH = blockDim.y*gridDim.y;
int ostartW = threadIdx.x;
int oendW = osizeW;
const int ostepW = blockDim.x;
// For all output pixels...
for(oh = ostartH; oh < oendH; oh += ostepH) {
int istartH = START_IND(oh, osizeH, isizeH);
int iendH = END_IND(oh, osizeH, isizeH);
int kH = iendH - istartH;
for(ow = ostartW; ow < oendW; ow += ostepW) {
int istartW = START_IND(ow, osizeW, isizeW);
int iendW = END_IND(ow, osizeW, isizeW);
int kW = iendW - istartW;
// Compute the average pooling over corresponding input pixels
T *ptr_input = input + istartH*istrideH + istartW*istrideW;
T *ptr_output = output + oh*osizeW + ow;
T sum = ScalarConvert<int, T>::to(0);
int ih, iw;
for(ih = 0; ih < kH; ++ih) {
for(iw = 0; iw < kW; ++iw) {
T val = ptr_input[iw*istrideW];
sum += val;
}
ptr_input += istrideH; // next input line
}
// Update output
*ptr_output = sum / kH / kW;
}
}
}
/*
* Description:
* this function computes the gradInput from gradOutput
*/
template <typename T>
__global__ void adaptiveaveragegradinput(
T *gradInput, T *gradOutput,
int isizeH, int isizeW, int osizeH, int osizeW
)
{
// iterators on input pixels
int ih, iw;
// select input/output plane based on thread/block ID
int i_plane = blockIdx.x;
int o_plane = i_plane;
gradOutput = gradOutput + o_plane*osizeH*osizeW;
gradInput = gradInput + i_plane*isizeH*isizeW;
int istartH = blockDim.y*blockIdx.y + threadIdx.y;
int iendH = isizeH;
int istepH = blockDim.y*gridDim.y;
int istartW = threadIdx.x;
int iendW = isizeW;
int istepW = blockDim.x;
// compute gradInput
for(ih = istartH; ih < iendH; ih += istepH) {
int ostartH = START_IND(ih, isizeH, osizeH);
int oendH = END_IND(ih, isizeH, osizeH);
for(iw = istartW; iw < iendW; iw += istepW) {
int ostartW = START_IND(iw, isizeW, osizeW);
int oendW = END_IND(iw, isizeW, osizeW);
// Compute the gradients over corresponding output pixels
T *ptr_gradInput = gradInput + ih*isizeW + iw;
int oh, ow;
for(oh = ostartH; oh < oendH; ++oh) {
int kH = START_IND(oh, osizeH, isizeH) - END_IND(oh, osizeH, isizeH);
for(ow = ostartW; ow < oendW; ++ow) {
int kW = START_IND(ow, osizeW, isizeW) - END_IND(ow, osizeW, isizeW);
T grad_delta = gradOutput[ow + oh*osizeW] / kH / kW;
*ptr_gradInput += grad_delta;
}
}
}
}
}
/*
* Description:
* this function computes the gradInput from gradOutput
* (uses atomic add)
*/
template <typename T>
__global__ void atomicadaptiveaveragegradinput(
T *gradInput, T *gradOutput,
int isizeH, int isizeW, int osizeH, int osizeW
)
{
// iterators on output indices
int oh, ow;
// select input/output plane based on thread/block ID
int o_plane = blockIdx.x;
int i_plane = o_plane;
gradOutput = gradOutput + o_plane*osizeW*osizeH;
gradInput = gradInput + i_plane*isizeW*isizeH;
int ostartH = blockDim.y*blockIdx.y + threadIdx.y;
int oendH = osizeH;
int ostepH = blockDim.y*gridDim.y;
int ostartW = threadIdx.x;
int oendW = osizeW;
int ostepW = blockDim.x;
// For all output pixels...
for(oh = ostartH; oh < oendH; oh += ostepH) {
int istartH = START_IND(oh, osizeH, isizeH);
int iendH = END_IND(oh, osizeH, isizeH);
int kH = iendH - istartH;
for(ow = ostartW; ow < oendW; ow += ostepW) {
int istartW = START_IND(ow, osizeW, isizeW);
int iendW = END_IND(ow, osizeW, isizeW);
int kW = iendW - istartW;
// Compute the gradients for over corresponding input pixels
T *ptr_gradInput = gradInput + istartH*isizeW + istartW;
T *ptr_gradOutput = gradOutput + oh*osizeW + ow;
T grad_delta = *ptr_gradOutput / kW / kH;
int ih, iw;
for(ih = 0; ih < kH; ++ih) {
for(iw = 0; iw < kW; ++iw) {
// atomic add since different threads could update same variable
atomicAdd(&(ptr_gradInput[iw]), grad_delta);
}
ptr_gradInput += isizeW; // next input line
}
}
}
}
#include "generic/SpatialAdaptiveAveragePooling.cu"
#include "THCGenerateFloatTypes.h"
#undef CUDA_MAX_THREADS
#undef START_IND
#undef END_IND