diff --git a/RadiativeLossesModeSolver.ipynb b/RadiativeLossesModeSolver.ipynb
new file mode 100644
index 0000000..3557aab
--- /dev/null
+++ b/RadiativeLossesModeSolver.ipynb
@@ -0,0 +1,1724 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Radiative losses analysis with `ModeSolver`\n",
+ "\n",
+ "`ModeSolver` can be used to simulate small radiative losses, without the need for a full FDTD simulation. Since these losses are often very small (on the order of $10^{-5}$ dB/cm), careful tuning of the parameters is necessary to ensure good convergence.\n",
+ "\n",
+ "In this notebook, we will benchmark the required parameters to accurately calculate the imaginary part of the effective index for two types of losses: substrate leakage and bend losses.\n",
+ "\n",
+ "For more information about the `ModeSolver` plugin, refer to this [tutorial](https://www.flexcompute.com/tidy3d/examples/notebooks/ModeSolver/)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "vscode": {
+ "languageId": "plaintext"
+ }
+ },
+ "source": [
+ "## Substrate leakage losses\n",
+ "\n",
+ "In this example, we will simulate radiative losses into the substrate for a strip waveguide fabricated in SOI, where the SiO₂ layer is thin enough to allow losses into the Si layer.\n",
+ "\n",
+ "We will compare our results with the ones obtained in the paper of `P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, \"Modelling leaky photonic wires: A mode solver comparison\", Optical and Quantum Electronics 38:731–759, (2006).` [DOI: 10.1007/s11082-006-9025-9](https://link.springer.com/article/10.1007/s11082-006-9025-9), where the authors benchmarked the radiative losses of the structure depicted above, using different numerical methods. \n",
+ "\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tidy3d as td\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "from tidy3d.plugins.mode import ModeSolver\n",
+ "from tidy3d.plugins.mode.web import run as run_mode_solver\n",
+ "from tidy3d.plugins.mode.web import run_batch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "vscode": {
+ "languageId": "plaintext"
+ }
+ },
+ "source": [
+ "### Defining the simulation domain"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We start defining a function for creating the `ModeSolver` object.\n",
+ "\n",
+ "Since we are interested in losses, some attributes must be carefully defined.\n",
+ "\n",
+ "1. The default boundary condition (BC) for the `ModeSolver` object is PEC. To study losses, we need to define a PML layer. This requires adding a tuple to the `num_pml` argument of the `ModeSpec` object, specifying the number of PML layers in each plane dimension.\n",
+ "\n",
+ " Note that the PML is added **inside** the simulation plane, so it is necessary to ensure that the simulation plane is large enough to prevent the PML from being too close to the structures. A good way to check this is by calling the `ModeSolver.plot()` method.\n",
+ "\n",
+ "2. To study low losses, we set the `precision` argument to `double`, so the results will have more than six significant digits."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# defining the function for creating the ModeSolver object\n",
+ "\n",
+ "\n",
+ "def mode_solver_substrate_loss(\n",
+ " resolution, npml, delta_override=None, size=(3, 4.3), num_modes=3, target_neff=2.41\n",
+ "):\n",
+ " # waveguide structure\n",
+ " wg = td.Structure(\n",
+ " geometry=td.Box(size=(td.inf, 0.5, 0.22)),\n",
+ " medium=td.Medium(permittivity=3.5**2),\n",
+ " )\n",
+ "\n",
+ " # SiO2 layer\n",
+ " box = td.Structure(\n",
+ " geometry=td.Box.from_bounds(\n",
+ " rmin=(-td.inf, -td.inf, -100), rmax=(td.inf, td.inf, -0.11)\n",
+ " ),\n",
+ " medium=td.Medium(permittivity=1.45**2),\n",
+ " )\n",
+ "\n",
+ " # Si substrate\n",
+ " substrate = td.Structure(\n",
+ " geometry=td.Box.from_bounds(\n",
+ " rmin=(-td.inf, -td.inf, -100), rmax=(td.inf, td.inf, -1.11)\n",
+ " ),\n",
+ " medium=td.Medium(permittivity=3.5**2),\n",
+ " )\n",
+ "\n",
+ " # mesh override region\n",
+ " if delta_override:\n",
+ " mesh_override = [\n",
+ " td.MeshOverrideStructure(\n",
+ " geometry=td.Box(center=(0, 0, 0), size=(0, 1.5, 1)),\n",
+ " dl=(delta_override,) * 3,\n",
+ " )\n",
+ " ]\n",
+ " else:\n",
+ " mesh_override = []\n",
+ "\n",
+ " grid_spec = td.GridSpec.auto(\n",
+ " min_steps_per_wvl=resolution, wavelength=1.55, override_structures=mesh_override\n",
+ " )\n",
+ "\n",
+ " sim = td.Simulation(\n",
+ " size=(4, size[0], size[1]),\n",
+ " grid_spec=grid_spec,\n",
+ " structures=[wg, box, substrate],\n",
+ " run_time=1e-12,\n",
+ " boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n",
+ " symmetry=(0, -1, 0),\n",
+ " )\n",
+ "\n",
+ " mode_spec = td.ModeSpec(\n",
+ " num_modes=num_modes,\n",
+ " target_neff=target_neff,\n",
+ " num_pml=(npml, npml),\n",
+ " precision=\"double\",\n",
+ " )\n",
+ "\n",
+ " mode_solver = ModeSolver(\n",
+ " simulation=sim,\n",
+ " plane=td.Box.from_bounds(\n",
+ " rmin=(0, -size[0] / 2, -((size[1] - 0.3) / 2 + 0.3)),\n",
+ " rmax=(0, size[0] / 2, 2 + (size[1] - 0.3) / 2),\n",
+ " ),\n",
+ " mode_spec=mode_spec,\n",
+ " freqs=[td.C_0 / 1.55],\n",
+ " )\n",
+ " return mode_solver"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAHWCAYAAABe0MPtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6IElEQVR4nO29eZwcdZ3///p86upjpmdykZlIQC4TBITIZeIBSJYEWNcsyIKiHCKsCLuwYXWJIgh82SzKtSISUSArysqyu6IrLhgCkQUjCpKfyBEJIpFIAgmZ6Znu6a7j8/79UdOd7pmemerqqp7uyfvJox5kqut4d1X3qz/1/rwPQUQEhmEYpmWRk20AwzAMMz4s1AzDMC0OCzXDMEyLw0LNMAzT4rBQMwzDtDgs1AzDMC0OCzXDMEyLw0LNMAzT4rBQMwzDtDgs1Mxuz7p16yCEwLp16ybbFIapCQs1s9vwzW9+E6tXr55sM0Jx77334pZbbplsM6q48847ceCBByKRSOCAAw7ArbfeGnjfYrGIf/qnf8KcOXOQTCZx9NFHY82aNTW3/cUvfoEPfOADSKVS6Onpwd///d9jcHAwqrfRHhDD7CYcdNBBdMwxx4xa73keDQ0Nked5zTcqICeffDLtvffek21GmVWrVhEAOvXUU+mOO+6gT33qUwSA/uVf/iXQ/meccQbpuk7/+I//SN/61rdo4cKFpOs6/d///V/Vds8++ywlEglasGAB3X777fSlL32JLMuipUuXxvG2WhYW6t2MwcHByTZh0hhLqNuBVhLqfD5PM2bMoJNPPrlq/ZlnnknpdJrefvvtcfd/6qmnCAB97WtfK68bGhqi/fbbjxYuXFi17Yknnki9vb3U399fXvftb3+bANDDDz8cwbtpD1io25jXX3+dPv3pT1Nvby+ZpknvfOc76bOf/SwVi0UiIrr77rsJAK1bt44uvPBCmjVrFnV3d5f3v+222+jd7343maZJvb299LnPfY527txZdY7f//73dMopp9Ds2bPJsix6xzveQaeffjr19fWVt/nZz35G73//+6mrq4vS6TS9613vohUrVkxof5D9CoUCXXnllbTffvuRaZq055570uc//3kqFAqjjnfPPffQkUceSclkkrq7u+mDH/xg+cu89957E4CqpSTajz32GAGgxx57rOp4//Ef/0Hvfe97KZFI0IwZM+jMM8+k119/vWqbs88+m9LpNL3++uv00Y9+lNLpNM2cOZMuu+wycl13wmvwwAMP0EknnVS+h/vuuy9dc801Vfsec8wxo2wfT7TvuusuAkB33nln1frrrruOANCDDz44oV3j8eCDD9Y8zi9+8QsCQPfcc8+4+3/+858nTdOqxJeI6J//+Z8JAG3evJmIiPr7+0nXdfr85z9ftV2xWKSOjg4677zzGnof7YTeZE8LExF//vOfcdRRR6Gvrw8XXHAB5s+fjy1btuA///M/kc/nYZpmedvPfe5zmDVrFq688krkcjkAwFe+8hVcffXVWLx4MS688EJs3LgRt99+O37961/jySefhGEYsG0bS5YsQbFYxN/93d+hp6cHW7ZswU9+8hP09fWhq6sLzz//PP7yL/8S73nPe3DNNdfAsixs2rQJTz755Lj2B9lPKYW/+qu/whNPPIELLrgABx54IJ577jncfPPN+P3vf48HHnigvO3VV1+Nr3zlK1i0aBGuueYamKaJp556Co8++ihOOOEE3HLLLfi7v/s7dHR04Etf+hIAYPbs2WPat3r1apx77rk48sgjsXLlSmzbtg3/+q//iieffBLPPvssuru7y9t6noclS5bg6KOPxg033IBHHnkEN954I/bbbz9ceOGF416H1atXo6OjA8uXL0dHRwceffRRXHnllchms/ja174GAPjSl76E/v5+vP7667j55psBAB0dHWMe89xzz8V///d/Y/ny5fiLv/gLzJ07F8899xyuvvpqnHfeeTjppJPK2+7cuROe541rIwCkUimkUikAwLPPPgsAOOKII6q2OfzwwyGlxLPPPotPfvKTYx7r2Wefxbve9S5kMpmq9UcddRQAYMOGDWWbXdcddR7TNHHYYYeV7dgtmOxfCiYcZ511Fkkp6de//vWo15RSRLRrRP2BD3ygaoT25ptvkmmadMIJJ1T5Zb/xjW8QALrrrruIyPcPAqD7779/TDtuvvlmAkBvvfVWXfYH2e+ee+4hKeUov2XJP/rkk08SEdHLL79MUkr667/+61F+5tK1IBrb9TFyRG3bNu2xxx508MEH09DQUHm7n/zkJwSArrzyyvK6s88+mwDQNddcU3XMBQsW0OGHHz7+RSDfjTCSv/3bv6VUKlX11FCv6+ONN96g6dOn01/8xV9QsVikBQsW0F577TVqFFvrSaPWctVVV5X3ueiii0jTtJrnnTVrFp1xxhnj2nbQQQfRhz/84VHrn3/+eQJAq1atIiKi+++/nwDQ448/Pmrb0047jXp6eia6DFMGjvpoQ5RSeOCBB/CRj3xk1GgDAIQQVX+ff/750DSt/PcjjzwC27Zx6aWXQkpZtV0mk8GDDz4IAOjq6gIAPPzww8jn8zVtKY0sf/SjH0EpFfg9BNnv/vvvx4EHHoj58+dj+/bt5eXDH/4wAOCxxx4DADzwwANQSuHKK6+sej/A6GsRhKeffhpvvvkmPve5zyGRSJTXn3zyyZg/f375+lTy2c9+turvD37wg/jDH/4w4bmSyWT53wMDA9i+fTs++MEPIp/P46WXXqrb9hI9PT247bbbsGbNGnzwgx/Ehg0bcNddd40axX7/+9/HmjVrJlzOOuus8j5DQ0NVT2yVJBIJDA0NjWvb0NAQLMuquW/p9cr/j7XtROeZSrDrow156623kM1mcfDBBwfafp999qn6+7XXXgMAzJs3r2q9aZrYd999y6/vs88+WL58OW666SZ8//vfxwc/+EH81V/9FT75yU+WRfz000/Hd77zHXzmM5/B5ZdfjuOPPx6nnHIKPvaxj40SzUqC7Pfyyy/jxRdfxKxZs2oe48033wQAvPLKK5BS4t3vfneg6zERY10fAJg/fz6eeOKJqnWJRGKUjdOmTcPOnTsnPNfzzz+PK664Ao8++iiy2WzVa/39/fWaXsUZZ5yB733ve3jwwQdxwQUX4Pjjjx+1zfvf//66j5tMJmHbds3XCoVC1Y/PWPsXi8Wa+5Zer/z/WNtOdJ6pBAv1bkAjH+gbb7wR55xzDn70ox/hZz/7Gf7+7/8eK1euxC9/+UvsueeeSCaTePzxx/HYY4/hwQcfxEMPPYT77rsPH/7wh/Gzn/2saiQ/0qaJ9lNK4ZBDDsFNN91U8xhz584N/b6iZKz3OBF9fX045phjkMlkcM0112C//fZDIpHAb37zG/zTP/1TXU8otdixYweefvppAMALL7wApdSoH8+33norkI+6o6Oj7Bfv7e2F53l48803sccee5S3sW0bO3bswJw5c8Y9Vm9vL7Zs2TJq/RtvvAEA5f17e3ur1o/cdqLzTCXY9dGGzJo1C5lMBr/73e9C7b/33nsDADZu3Fi13rZtvPrqq+XXSxxyyCG44oor8Pjjj+P//u//sGXLFqxatar8upQSxx9/PG666Sa88MILuO666/Doo4+WXRNjMdF+++23H95++20cf/zxWLx48ailNOLdb7/9oJTCCy+8MO75grpBxro+pXUjr09Y1q1bhx07dmD16tW45JJL8Jd/+ZdYvHgxpk2bNmrbMC6ciy66CAMDA1i5ciWeeOKJmgkzRx55JHp7eydcbrjhhvI+hx12GACUfwRKPP3001BKlV8fi8MOOwy///3vRz1BPPXUU1XHP/jgg6Hr+qjz2LaNDRs2THieqQQLdRsipcSyZcvwP//zP6M+xABAE/QrXrx4MUzTxNe//vWqbe+880709/fj5JNPBgBks1m4rlu17yGHHAIpZflx9O233x51/NIXqNYja4kg+/3N3/wNtmzZgm9/+9ujth0aGipHsCxbtgxSSlxzzTWjRqGV7y+dTqOvr29Mm0occcQR2GOPPbBq1aqq9/C///u/ePHFF8vXp1FKI/FKG23bxje/+c1R26bT6bpcIf/5n/+J++67D//yL/+Cyy+/HGeccQauuOIK/P73v6/aLoyP+sMf/jCmT5+O22+/vepYt99+O1KpVNX12b59O1566aWqOY6Pfexj8DwPd9xxR3ldsVjE3XffjaOPPrr8pNTV1YXFixfje9/7HgYGBsrb3nPPPRgcHMRpp50W+Hq0PZM7l8mE5fXXX6eenh5KpVJ06aWX0re+9S36yle+QgcddFA5FroU9VErMuSqq64iAHTCCSfQN77xDfq7v/s70jSNjjzySLJtm4iIfvjDH9I73vEOuvTSS+mb3/wmff3rX6cjjzySDMOg9evXExHRJZdcQgsWLKArrriCvv3tb9N1111H73jHO2jPPfesirUeSZD9PM+jk046iYQQdMYZZ9Ctt95Kt9xyC332s5+l6dOnV72vL3/5ywSAFi1aRDfccAPdeuutdNZZZ9Hll19e3uZzn/scCSHo2muvpX//93+ntWvXElHtOOrStTv66KPplltuoRUrVlAqlaJ3vvOdVbHmpTjqsa7veGzfvp2mTZtGe++9N914441000030YIFC+jQQw8dZc9Xv/pVAkD/8A//QPfeey/9+Mc/HvO427Zto5kzZ9Jxxx1XjnrZvn07zZ49mxYuXBhJBuZtt91GAOhjH/sYffvb36azzjqLANB1111XtV3pOoyMUT/ttNPKMdLf+ta3aNGiRaTrOv385z+v2u6ZZ54hy7KqMhMTiQSdcMIJDb+HdoKFuo157bXX6KyzzqJZs2aRZVm077770kUXXTQq4aWWUBP54Xjz588nwzBo9uzZdOGFF1aJ0B/+8Af69Kc/Tfvttx8lEgmaPn06HXfccfTII4+Ut1m7di199KMfpTlz5pBpmjRnzhz6+Mc/Tr///e/HtT3ofrZt0/XXX08HHXQQWZZF06ZNo8MPP5yuvvrqUaFmd911Fy1YsKC83THHHENr1qwpv75161Y6+eSTqbOzM1DCy3333Vc+3vTp08dNeBlJEKEmInryySfpfe97HyWTSZozZw594QtfoIcffniUPYODg/SJT3yCuru7J0x4OeWUU6izs5P++Mc/Vq3/0Y9+RADo+uuvn9CuINxxxx00b948Mk2T9ttvP7r55purwiGJxhbqoaEh+sd//Efq6ekhy7LoyCOPpIceeqjmef7v//6PFi1aRIlEgmbNmkUXXXQRZbPZSN5DuyCIJnhOZhiGYSYV9lEzDMO0OCzUDMMwLQ4LNcMwTIvDQs0wDNPisFAzDMO0OCzUDMMwLQ7X+pgApRT+/Oc/o7OzM1QaL8Mwuw9EhIGBAcyZM2fcomT1wkI9AX/+859x53e+M/xXBCHnpGofR8ga2zUbCVT+FlGpHHEzEUDlDyIBwCRciyD3QwCOS4grE0FKWTU4UEpNWB4gaoQQVYJDRA0XiwrDyMJXQQpJ1YMQYsLiWiMHamPdi2uuuQZ/+tOfsOeee0ZmHwv1BHR2dgIApCRoDfxAEgkQAV1pQJOjR+auR8gV/ROkLQVda/7onYiQHfJt0CUhnQCqlbs55AqAq/zzZpJqUp5kJrofRAogD3rqHRDa6HrJUaCUKpdKNU2z/FlsNgMDA+WyptOmTYt0pBgU27bL9T46OzvHrIcdFsdx0NfXByHEmJ83pVRV7ZtadbJLr0d9r1ioJ8C/ab5INyKeivwlYQoYI364HRfIFQWs4btRdCWSJsFo4t1RBPTnBHQNMDTAdiWICOlEc0dwuYIAQSBpEhzPt6MrTajx2xYbQe4HEUBKwepIQ+rR10VWSmHHjh0wTROWZZVrNTdbrAcGBkBE6OzsRLFYhG3bmDFjRlPFuiTSpVZgxWIxcrEunUNKWfO9lUS6JORKKSilaoo1EK7a4XjwZOIk47hAX15Al0B3B6G7g6BLf53jTrx/FJRE2lVAd4rQnSakLUKuKJArNE8hcwWBXFEgbfk2dKcIrvJtU036vWiJ+zEs0o7jYObMmZgxYwYymQyy2WxVFbm4GRgYQDabRSaTwYwZMzBz5kw4joMdO3Y0zf1h2za2b98OwzAwc+ZMzJw5E4ZhYPv27WM2L4gapRSKxSKICKZpIplMQtd1uK47boXIKOERdUCIJi4fOvFBANAuP6PjAf05DZpGyKS8spMhkwL68xr6ckBX2hs1Ao8SRf65PI/Qlfaga/57TVkAQWKwIEEgpK14v5i5okSuIJBOeEhZCkSArgFdKf8a9eWArpQX68i6nvtB5CEO5/RIkS6NGksj6VIN57hH1pUiXTqXaZqYOXMmtm/fjh07dsQ+sq4U6cpzzZgxAzt27MD27durrlEcjBRpXfclszSSLrk6xhpZRwULdRAEgEa/mASAJJSbg1IeHE8iW0xBEzYyRh5wq6fMMgbQ76XQNyiRsfIwtOiFkgjoL6TgESFj5aEphcqBUlICpJvIDVkgt4iUGc8IJm+byDsWUsYQktKGcna9pgHoNP1r1Teg0JXIIw6Xdd33Q3qAjPbrM5ZIl2iWWNcS6RLNEuuxRBrwJ1mbIdZjiXSJZoo1C3UQCIDUGptXEwAUIPU0PBAGhjToemmUWPsL1234I7kBOxP5yFoRkM1rUAC6OzwYWrrmdh0GIIoSuUIaQk9GPrLOFSXyrkQ6qZC2LACjP+yWMXwtciayjhn5yNrxUPf9yKQcGCI6X8hEIl0ibrEeT6RLxC3W44l0ibjFeiKRLjFSrON6wmChDoQAETU0QUAEQACukhgs+JN2/iTZ2OqrCaA77fto+/M6ulPRTDD6Ii3gKaA7TTD08X8BOhL+70yuqEFARjbBmCsI5IsCHQlCOiHgj59rY+r+tejLC2TzemQTjI4L9Ofrvx/ZvIFMUtX4WamfoCJdIi6xDiLSJeIS6yAiXSIusQ4q0iUqxTquCCWeTAyIRwKNzp+QArJD/kRVUKGRwt82qgmtkROHQYU/nYh2grFy4jCo8Bs6Ip1grJw4rPd+aBrQP2TCtp2JdxqHekW6RGdnZ6QTjPWIdImSWEc1wViPSJcoiXVUE4xEVJdIl7AsC7quxxbn3jZCvXLlShx55JHo7OzEHnvsgWXLltVsPjqS+++/H/Pnz0cikcAhhxyCn/70p6FtsF2EFmulAE8BWh2iUCIqsQ4r0iWiEuswIl0iKrEOI9IlpPBdJLpUeHtnf2hxCCvSJaIS6zAiXSIqsQ4j0iWiEut6R9IjsSyLR9Q///nPcdFFF+GXv/wl1qxZA8dxcMIJJ5QbnNbiF7/4BT7+8Y/jvPPOw7PPPotly5Zh2bJlIbp3EzRBIIQTa1f5flAAyCTDPbI3KtaNinSJRsW6EZEu0ahYNyLSJaQAMkkHuq6HEodGRbpEo2LdiEiXaFSsGxHpEo2KtVIKnueFFukShmGE2m8i2rYV11tvvYU99tgDP//5z/GhD32o5jann346crkcfvKTn5TXve9978Nhhx2GVatWBTpPNpvFzTfd6Aub8AVSwPeZBvk8uQrlfTQJ7NGtGpoUDCO4UYl0JWEENwqRriSM4EYh0oAfnkfKgZF5F3b25+sS3KhEupIwghuFSFcSRnCjEOlKwlxbpRTefPNNDAwMwDCMhsTWcRx88YtfRH9/PzKZTOjjjKRtRtQj6e/vBwBMnz59zG3Wr1+PxYsXV61bsmQJ1q9fH+qcuvRHc0FH1pUibeijy0eEod6RdRwiDdQ/so5apIH6R9ZRiXQl9Y7k4hBpoP6RddQiDdQ/so5apIHw98N1Xei6PmG9j8miLaM+lFK49NJL8f73vx8HH3zwmNtt3boVs2fPrlo3e/ZsbN26dcx9isViVbZRNpsFhF/bgRT5cQkScJQO2yWYmlczrtdT/jYC/jYgv96HcvLwIsjq6jSB/kICOwclMolCzThrP046AU/520hS8Bqb+6oioQFKNzA4ZEJ5NlJm7YPnbQN520TKtJHQnEhtkBiOsy4ksHNAoStRqHk/HM/fRpMKnWYB5AINlfUhBTH8yxs0+iAukS4RNBokDpEuETQaJA6RLhHmfkybNg3bt2+PzIaoacsR9UUXXYTf/e53+MEPfhD5sVeuXImurq7yMnfu3OEKbsNV3YSApgkYmgJBwPZ0UMVrEAIeyWGRBkxdQUjhD6eFgJA6hDQaXqRm+BNaGpAtpuCSWfU6CQPZYgoe6ehKuTANLZLzjlzSCSBtecg7FoacxKjXh5wE8o6FtOUhnUAsNpiGhq6UC490ZIspkKh+3SUT2WJqONPRg9SiOG/1I9JEI7m4RbrERCPrOEW6xEQj6zhFukS99yMu33JUtN2I+uKLL8ZPfvITPP744xOWEezp6cG2bduq1m3btg09PT1j7rNixQosX768/Hc2m8Wd3/n2cDGWXR8oXcNwmUvAdrWyz7o0cbjLj+0/SpWeyoVmQUb0dCUBdHcMx/UWEmXXhiJgICfgETAtTTD0eNNbO1KAkAK5ogUhd7k2cgWBvFOKkzYAxPdlsDRgmgT68joGCrvirB0XyBb8QlhdaTFunHQ9lHzUlYw1kmuWSJcYa2TdDJEuMdbIuhkiXaKe+9GsuiFhaZsRNRHh4osvxg9/+EM8+uij2GeffSbcZ+HChVi7dm3VujVr1mDhwoVj7mNZFjKZTNUyFiN91pU+6aCTjY0y0mdtu/H4pCdipM86Dp/0RIz0Wdsx+KQnYuRIrlgsNlWkS4wcWTdTpEuMHFkXi8WmiXSJVrkfjdI2I+qLLroI9957L370ox+hs7Oz7Gfu6upCMumXmTzrrLPwjne8AytXrgQAXHLJJTjmmGNw44034uSTT8YPfvADPP3007jjjjsis0uXAHRfoJst0iVKYt03KNCX8088La2aWiYVwK6RdNFXxGaKdImSWO/MSfTlBHRJTS+TWhKH7du3l/2es2bNaroojBxZN1OkS5TE+q233mq6SJdolfvRCG0zor799tvR39+PY489Fr29veXlvvvuK2+zefNmvPHGG+W/Fy1ahHvvvRd33HEHDj30UPznf/4nHnjggXEnIBmGYVqNthlRBwn3Xrdu3ah1p512Gk477bQYLPKpdHfoesln3dxRdSkEzyOgO62QKwj05UVTXR9AdQgeUDGybuKouhSCZ2j+aL4/L9CfE00dVVeGfM2cORPZbLYpJTlHUunuAJpXIrWSkk/aNE1kMhns2LGjKSVSK2mV+9EIbTOibkVG+qTrjbOOgpFx0qYebW2QoIz0SUddGyQII+OkzYhrgwRh5ESVZVmR1qIIykifdNS1QYIwcuLQsqymNx9olfvRKG0zop5siMjvkzeMpwQcTw6LtB9LTeRXWIPmv+aPrIfjrEn4sdReESqihrGKgOyQAVdJdCVtaIKghoODOxP+aztz/muGFp9K5YsacraOtOkiaXhlG5IGQErDYEEHKRcpK9qGpJU4nkD/kAldeuhMOIDy60lrAsgk/Nf6BhUySSeakTWNfi9jRXc0q35yibEmDpvZfGCs6I5mNh+o5360OizUQRDAcMYKgFIyi1ZOZim9XEITBEg1nBQj/YQXEEACpFyQaHwksSuZBcgk8tCFqmqULQBkLAf9hQT68/qYSTGN4iezaEiZRSQNZ1Sz7qThgMhArmiCyBszKaYRdiWzuMhYBYhdtwoAoAsgY7nIFhLoz2tjJsXURUXCCzBxnHSzxHqi6I5miPVEIXjNEOt670dXV1ek548aFuogECCEhJC+i8FRJXeHgByjy4cuASjAcf2kGL9WCCCNNBrNUlUEZHMCCsC0DoKh1y76DwDTDP+xf8DuiNxnnSsIDLkCHUlCOpEAkKi5XacBSE0gV0xBatFGgjguMGALGHopBK92rLZmAJo+HGdtmw37rCvjqIPGScct1kFD8OIU66Bx0nGKdZj7sXPnTiilJqXDehBa06oWpd446UqfteNi1GgzDPXW7oi6nnWJeuOk4/BZ11u7I+p61kD9GYdR108uUW+cdBw+63qTWaKuZw2Evx+lZrWeF597rhFYqAOiQiazVIq1pxpruxi2wFLUYh02mSVKsQ5bYClKsVYEvL0zW3fyRNRiHTaZJUqxDptxGKVYh80AlVKiu7sbQgjYtl1uq9VKsFAHQsAjETqZRZcolzbNDoUTh0ar4EUl1o1mHEYh1o1WwYtCrMsTucMhX/W6MKIS60YzDqMQ60bTwqMQ60bT9KWU0DStYbF2nOjnYAAW6rpoJDZaSr8etRdCHKIqVdqoWEeVFt6IWEdVqrQRsVbkN7l1lcT0aV2h/cyNinVUaeGNiHVUtTsaEeuoaqlIKctdWsKIdak7TBywUAdEE9RwAouQfoeXesQh6nrSYcU66todYcQ66nrSYcS6nFzkAV1JG6bZWKGpsGIdde2OMGIddYGlMGIddcErIUQosS4Wi7E2t+Woj0DQcJx0gwJFgC4VulKE/pyGvtxw2c0x7m1p5OZ5hK60X9I0ih9sASCT8o/dlwO60t64XWdyRYlcQSCd8JCyVCQ2AEDKAggSgwUJAiFtjf3FdDygP6dB0wiZlB8SGYUdfulT1H0/MikHRgRhlkD90SBxFViqJxokrip49USDxFWVsDSyLhaL5R/O8VpzlURa1/XYokZYqIMg4Cc4NKIMBIAklJvzkzJMiWwxhb4Bha5EflRcrx8nnYJHhIyVh6ZU5JmOGQPo91LoG5TIWPmacdZ520TesZAyhpCUNlTELrikBEg3kRuyQG4RKXP0iNLx/GulCRsZIw+4fjJLVGhA3fdDVx5ojNDMMAQV67ir4AUR67hLlQYR67hLxwYV60qRtiwrNh81C3UQCIDUhhNfQiIAKEDqaUiNYBlAtwH050xkHbNqJKcIyOY1KADdHR4Mbew46UbpNvxR4oCdGTWyzhUl8q5EOqmQtiwA8dS17jAAUZTIFdIQerJqZO14wMCQBl0vjXbjyaar934QeSinYEbERGLdrFKl44l1s+pJjyfWzarvPZFYjxTpOGGhDojfvCW8UhPBF2shy6M1Uwe6077fNZv3i90DQDYv4CmgO00w9Hh7uGnCt6E/J9Cf18t+8FxBIF8sFf0X8Med8dGR8C9PrqhBQCKdIDgu0J8XvnsiTZEV/R+Leu9HFBmmIxlLrJtdT7qWWDez6D9QW6wBNLWe9Fhi3UyRBlioJ53ShFZfXqBv0Fdwj5pb9L80wdifE8OV5wDbbW7Rf6C6nrXj+aPpZhb9B1rkfowQa8uyUCgUml5PulKsbdtGsVhsej3pSrEu1ZIOGxIZlpFi7TgOlFJNE2mAoz5aAkMHulIEVwm4SqCryeVJgV1iTSRguwKm3vyi/4Av1qZOsF0BouaWJy3REvdjWKyJCIVCAYlEoulF/wFfrBOJBAqFAoio6UX/AV+sZ8yYAcdx4DgOZsyY0fTypCWxJqJyqnmzRBpgoW4JFKEqRC1XaE5JzpEMFXfZ4HhoWonUShzXP3ctm5pFq9yPXC5X/nflo3czKY2ka9nULJRSZRcM4I/wm1EidSSVE4VE1NQMRhbqSaYyTnpaWmFaWjW1fnKJyjjpmRnV9HrWQHWc9MyMano9a6B17kelT7q3t3dS6idX+qR7e3ubXs8aqJ44nDVrFmbNmtXUetYlKn3SyWSy6enmLNSTSK1kljgKB03EyGSWuAo5jUetZJZmNx9olfsxcuIwrkJO41Fr4rDZzQdqRXfEUchpIkZOHDaawRgGnkwMggCIFKiRbykBIAHl5OEpVVFPWiKTKECSgjf8ZCUxHNdbSGDngIqmfvIY+PWkTaRMGwnNKdsAAJ2mb+POQRlbPWugsp60QqdZALlAyfuR0AClGxgcMqE8O5Z61gDqvx+orkcdFWNFdzSz+cB40R3Naj4wXgheM5sPjBXdUW9STKOwUAeBAEA0Fkc9vLOQOkgQsgUDHkl0pWwYmoaR4W+mBLqki/4hE9liKrrOJBXkixryjo605SJlAUB1OrSAH7ucHfKTQeLoFON4AtmiCV1TyCS9mvWk0wlACA8524IQWuSdYhSh/vsRw4/nRCF4zRDrICF4cYt1kDjpZoj1RCF4tcQ6LlioAyGG46jDfxDK8iYtDBT8RrTT0gRDH3vm2NKAaXK42H1BjzQCIlcQyDulOGkDI0W6bC6A7g7/sT9bSEQapua4QLbghwN2pcW4cdIdKUBIgVzRgpDRRaQoAgZy9d+PbDGNTKIQiQ1A8GSWOMW6njjpuMS6nmSWOMU6aJz0SLGOa2TPPuqAOF7jCknKL3NaT4GlOHyk9RZYisNnHabAUtQ+6zAFr0r3w/P8MqdR+EjrTWaJw2cdJpklap91mIzDOHzW9SazVPqs42o8wEJdB3YD7lEiv8SpF6IKXpRiHbYKXpRi3UgVvKjEupGqhH7bLw+uknh7Z2OhYmEzDqMU60YyDqMS60bSwqMU69LkYL3JLHHHVbNQB2K4qS2FE+tSdxjAL3MaxnUQhVg3Wqo0CrGOolRpo2IdRelYQ/PLnLquG1ocGk0Lj0Kso0gLb1Sso6jdEYVYl1pxhc04lFLGNqHIQh0QQyNoon6xVgqwXV/qNemX1QxtQwNiHVU96UbEOsp60mHFOsr63oZGmD6tK5Q4RFW7oxGxjrJ2R1ixjrLAUiNincvloJSCpmkNjYzZR90CmAbqEutKkTY0v3FAo4QR66iL/ocR66iL/gP1i3XUTRgAwDSNusUh6gJLYcQ6jgJL9Yp1HFXwwoj1wMAABgcHIaVsemp6UDjqIyBEBCLlf7ldCY8EbIdg6LU/CESA7WrDIq0ghS8U5BWh0JhYagLIJAT6h0z0DapxQ/fyRQ05W0fadJE0vEgrc3Ym/Am1nTk5buie4/m26tJDZ8IBVHT1pJMGQErDYEEHKXfM0L1yj0Pl26oJauxa0K6d64k+iKsKXj3RIHFWwQsaDRJnqdIw96Ojo6MqTb3VYKEOggAAKjcOMDQP8CQ8koArRiWCEAG2NyzS0oUmhnclAVJuJOUxdQFkLBfZQgL9ea1mUoyfzKIhZRaRNBxQxPkqAkDGctBfSKA/r9dMitmVzOIiYxUgqLH+C7VIGg6IDOSKJoi8UUkxu5JZgEwiD12oxq8FVSe8BBGHuEuVBhHrZpQqnUism1FPut77YVkWC3XbQ34MtagYtprSd394JAFPotQ6TynA9obdHTqgD3cB8YUakEYaWkRllTUD0PThOGvbrHIp5AoCQ65AR5KQTiQAJKI5aQ2mGb5LYcDuqHIpOC4wYIvhKAmqmcwSFZ0GIDWBXDEFqe1y8SgCsjkBBWBaB8HQo2nCQOSBRrS7GU8cmlVPejyxbmY96bHEullF/4H67sdkFLyqB/ZRN8BIn3WVT1r3aynHTS2fddQ+6Ymo5bOOwyc9ESN91nH4pCeilo+02UX/a/msm130Hxjts26mSJdohfsRBTyibhDTKI2sAW94Uq1ZIl2istj99qx/4mYX/a9sPrAz59tgaNT0etKVzQdyRQEhqKlF/4Hqkdwbb7wBAE0XhcqR9VtvvVW2q9n1pCtH1tlsFkKIphb9B1rjfjQKj6gjoDLkTorminQJQ0dVv8Ok1fwCyqWKdyVKlfiaTeV7NzQ0veg/4ItDZZhXOh1f38uxkFIik8mU/85kMk0v+g9Uv3fLsiYlsqIV7kcjsFA3SMndAaAc2dFIBmNYcoVdnVmEoKbXTwawq8ehJOiS0N/ketbArhA8IXZ1imlmPesSAwMD5c4sQoim108GfJ/0jh07YBgGDMPAjh07mu6LLbk7hBDlTjHNrGddohXuRyOwUDfASJ+0VWecdVRU+qS709T0+slAtU+6u4PQ3dHcetbA6Djp7nRz61mXqPSBzpgxo+n1k4HqicOZM2di5syZTW8+MNInPWPGjElpPtAK96NR2kqoH3/8cXzkIx/BnDlzIITAAw88MO7269atgxBi1LJ169a6z01UiqWm4b5pVCHSBE3460v/9sV61/bl8D5SfsRARMtggTBYAFKWh5TlgsiDrnnoSrlwPUJfDvBUdOertdiuh74coElCJuVCwIOAh0zKhSZ9G2w3Xhs85dvgeoSulAtd89enLD+2erAADBYo0nPWijOsNVHV7GL3tSYOm918YKyJw2Y3H2iF+xEFbTWZmMvlcOihh+LTn/40TjnllMD7bdy4scpXt8cee9R3YgE/wWH4i+nHSesgkB8nDaAyh8XQAHjacJy18uOuCQBJKDcHFVHWSd42kXcspIwhJKWNymgxDcPF7osp9A0odCXysTQfcDz/HJqwkTHygFudzJIxgH4vhb5BiYyVj6X5gB8nnYJHhIyVh6YUKr97SQmQbiI3ZIHcIlJmBCJFBMjqr8940QTNKnY/XnRHs5oPTBTd0azmA/Xcj1afWGwroT7xxBNx4okn1r3fHnvsge7u7vAnJgBSG+70AtieqBhJ176EfgYjDcdZC+g6AAVIPQ0ZQfH9XFEi70qkkwppywIwuj6BZQDdBtCfM5F1THSlvEgn9xwPGBjSoOsYPnbtD3u3AfTnNQzYGXSlvapJz0ZRBGTzGhSA7g4PhlZ7kqjDAERRIldIQ+hJpK3GfjCIPFSmNgYJ+YpbrIOE4MUt1kFD8OIW63rvR19fX7m7eCvSVkIdlsMOOwzFYhEHH3wwvvKVr+D973//mNsWi8WqrsulD5IQAJEYESc9vurtCt0TgOtrPYRseGSbKwjki6Wi/wIju5FU2aAD3WnfV5zNR9d8oDxxqJXipMe2QRO+Df05gf68Hlm4nC/Swi8dmyYYE1S86kj4D0e5ogYB2XD4YinDtJ643LjEup446bjEut446bjEOsz9ePPNN+F5HrSostEipjV/PiKit7cXq1atwn/913/hv/7rvzB37lwce+yx+M1vfjPmPitXrkRXV1d5mTt3LoDwySyVSTFR1BQPk8wSdfOBMMksUTcfCJvMEnXzgYHBfN3JE1H7SMMks0Ttsw6bzBK1zzpMMotpmpg2bRqICMVisSV91oIo6soLzUEIgR/+8IdYtmxZXfsdc8wx2GuvvXDPPffUfL3WiPrO73wbpWFw2GSWUlLMtDQhkwp3yRvNOIwiW7DRY0SRLRjFMRq9lkQeckMKQ9SNrq5poUaDUWQLNnqMKLIFozhGFNmCjRzDtm1s2bIFjuOUmwCEuR+FQgFf/vKX0d/fXzUv1ihTekRdi6OOOgqbNm0a83XLspDJZKqWUmPaRjIOdd0fVebtcCO5KNLCGx1ZRyH0jY6so0oLb3RknStK5GwdnR3p0MLS6Mg6CqFvdGQdVVp4oyPrKIS+VOY07Mi61HggDnY7od6wYQN6e3vr3k8T1HDGoaYBKbN+cYiydkdYsY6ydkdYsY66dkdYsc4VBHIFibTporMj1ZANYcU6ytodYcU66todYcU6ytodmqaFEmvXdWMNeWyrycTBwcGq0fCrr76KDRs2YPr06dhrr72wYsUKbNmyBd/97ncBALfccgv22WcfHHTQQSgUCvjOd76DRx99FD/72c/qPrcYzjoMCw2HURu6f5CBgj8JNlGq91BRIG8LpEyCaRCcKH6wBdBhEbIFgZ0DAp0pGneC0x3uFq4Pp4h7CojCjHSCMJAXeDsnkEkQxutiRAQM5AVcAjIJAgQiuRam4b+feu9H0vRg6gqO40Koxr+gXV1d2LlzJ958801MmzYNYpwb4jgOdu7cCV3Xkclk4LrRZBRlMpkqGwxj7GqHRISdO3fCdV1MmzYNACIRKsuykEql0NfXB9d1J0z1zuVyGBwcREdHByzLCm2D4zjD+RF+5IdhGLBtG4VCAaZpjvtD6HkebNuGECK2yci2Euqnn34axx13XPnv5cuXAwDOPvtsrF69Gm+88QY2b95cft22bVx22WXYsmULUqkU3vOe9+CRRx6pOkYgBIFAUF74SQaCABFQLNrQpEJCk7AdCeUpaLL2cT0l4SqJhKYgSKFQCH36miQ1AceTGMwDuvRqijWRv40h/G0q3PeRYEhAKA35gt9gQYjRQkkEuEoDCEhqCq5LiEibAPiOrXrvh1Qeio6AKtoQMpppno6ODti2jWw2C9M0a4q1Ugq2bZdrZhQjviHJZBK2bSOXy40pUEQE27YhpURHRwc8z4v0kV/TNKTTadi2DSIasw+h67pwHAfpdBqapqHQwBfEdV0opcrXXAgBwzDK59B1fcz74bpuuV9iXBORbTuZ2Cyy2SxuvumrmJZ2kTDCXyrX8wVv4X5voSPR5AIYTOQoZUMQMOvwK6AnZ0+2OUyD9Pf346c//Sksy6p6kqh8ehn5pFPrtVwuh4suuijyycS2GlFPGgTougHTDO+YFR5ArkD39Fnoaq/CXUwNlJODKvZhWncGRnr6ZJvDRICu6zAMo8rXbppm2XefzWbL8wG2baO/vx+WZVXNEUT9hFNit5tMZBiGqYeRE77FYrHpTRhYqBmGYSagJNalaBtd15vahIGFmmEYpsVhoWYYhpmA0ki6NLJ2XbepJVJZqBmGYcZhZHKRZVlNr2fNUR9BEAApG8oLH55HngB5Em5+Kxzi8Lx2R3kF1Aj5ZqYYY2WANqu+eAkW6gCI4cYB1EDBf1ISRBo8OwtPxhPCwzQPUjaklphsM5gYmShNv5ZYxwULdQBICQgtCc0IH0etJCCFgNU9DwmOo257SnHUzNQkaC2VkWIdV4d19lEHQfh1IBiGmfrUW/CqMs56cHAwFptYqAMyWJANF7t346mAyDBMRDiOEyqZpTIaJA5YqINAClqDnUmGioKFmmFaGKUUdu7cGTrj0DTN2JrkslAHJG2p0MXucwW/NOYELf0YhplEbNtuOONwvNKwjcBCHRARsth9qeh/yiQWaoZpYYQQmDZtWkt2Iueoj4AQKQgAmRTQn9fQlwO60h6MccQ3V5TIFQTSCb/IvO1KkDsE5fDMZLuj3DyI4+GnFGPVAG8FWKgDICRA3hDU8DA6YwD9Xgp9gxIZKw9DGy28edtE3rGQMoaQlDZcR4I8A8XsyygWI+4AwDQdUg6kEY8/kpkcWlWkARbqQJAChJaErHA/dRv+yHrAzowaWeeKEnlXIp1USFsWAAtCAkJIWJkDYKV4RN3uKDcPcvOTbQazm8BCHRAhZNUvriaA7rTfbLU/r5ebreYKAvmiQEeCkE4IANrw/v4vttCrBZ9pX5QXXzNThqmEhboBSt20+3MCfXkBQwNsN5pu4QzDMCVab3qzzSiJNZGA7QqYOos0wzDRwkIdAUPFioaXHhrOYGQYhqmEhbpBSnHSaYswMxM+KYZhGGYsWKgboFKk0wkqu0FYrBmGiRKeTAxAKY7ac3YV68jbBvK2iZRpI6E58Jxd23eaQH8hgZ2DEplEAYamoDwJ5Wko9r2CQoHrUbc7XI+aaSYs1AEgAiA0iOHU0nxRQ97RkbZcpCwAqI63EwC6Uh6yQxLZYgpdSduPo1YSmpmBZvFQu93hDi9MM2GhDgIBQpqQmvDjpJ1SnLSBkSJdQgLo7vDjrLOFBDosgtAE9FQvDG4c0PZw44CpR1wlSqOAfdR1MNInPRGVPutsQaBJDYsZhgmB4zjI5XKTbUZNWKgDUnDqE+kSZbEWfugewzCtiWEYGBwcxMDAQOhjxNWRnIU6EBJFJ3zGoRRAZ4rQwjVfGGa3R9d1dHR0IJvNhhJrpVRsrbjYRx0EAVgGId3AJL8QGLckKsMwk086nYau68hmswAQuGOLUgo7duyIzc/NQh0EAhIGwY/nCA+PqBmm9SmJc1CxLom04zixteJioQ6CUCDlQHnh47HIEyBPws1vhcMF59seDs+b2gQV60qRnjlzJorFeHIkWKgDIAQA8kAq/GwgKQkiDZ6dhSc54aXd4YSXqc9EYj1SpE3TZKGeTEqNAzQjvO9CSUAKAat7HhIcR932cBz17sFYYl1LpOOkraI+Hn/8cXzkIx/BnDlzIITAAw88MOE+69atw3vf+15YloX9998fq1evjt1OhmGmDp2dnchkMuVokGaLNNBmQp3L5XDooYfitttuC7T9q6++ipNPPhnHHXccNmzYgEsvvRSf+cxn8PDDD8dsKcMwU4lKsX7jjTeaKtJAm7k+TjzxRJx44omBt1+1ahX22Wcf3HjjjQCAAw88EE888QRuvvlmLFmyJC4zGYaZgqTT6bILxLKspok00GYj6npZv349Fi9eXLVuyZIlWL9+/Zj7FItFZLPZqoVhmN2bkrtDCIFEIoFCodBQBmO9TGmh3rp1K2bPnl21bvbs2chmsxgaGqq5z8qVK9HV1VVe5s6d2wxTGYZpUUb6pGfMmFHls24GbeX6aAYrVqzA8uXLy39ns1nc+e1VIFJ+udOQEAFEEuQOQTlcnandUW4exPHwU56xJg7rTYpplCkt1D09Pdi2bVvVum3btiGTySCZTNbcx7IsWJZVta7UOEA10LKFPAnyDBSzL6NYLIQ+DtMakHIgjXi/nMzkMlF0RzPFekoL9cKFC/HTn/60at2aNWuwcOHCuo5TiqOWtUtPB0JIQAgJK3MArBSPqNsd5eZBbn6yzWBiImgI3kixjou2EurBwUFs2rSp/Perr76KDRs2YPr06dhrr72wYsUKbNmyBd/97ncBAJ/97GfxjW98A1/4whfw6U9/Go8++ij+4z/+Aw8++GB9JxYSAEE0UKxDCEAIAaE3JvhM66A8e7JNYGKg3jjpSrE2jHi+3G01mfj0009jwYIFWLBgAQBg+fLlWLBgAa688koAwBtvvIHNmzeXt99nn33w4IMPYs2aNTj00ENx44034jvf+U6o0LxcUUI1WNuBGwcwTGtDRKGSWUpx1vl8PE9ZbTWiPvbYY0HjzOjVyjo89thj8eyzzzZ2YiJ4SqA/J9CV9ruN14vrcuMAhmlliAg7d+6EUipUMktnZ+eY0WSN0lYj6smD0JFQcJXfA7HekbXj+q24uMwpw7Qutm3Ddd2GMg7HClJoFBbqgGgS6E5R3WLtuEBfXkDnxgEM09IQEaZNm9bUjMOgsFDXgaHXJ9ZlkZbciothWh3TNGObDGyUtvJRTxalOGrP8SABdJoS2UICOwcUuhKFmgLseP42mlToNAvwXAnlaSj2vYJCgetRtztcj3rqIWXrjltZqANABEBoEMM30pRAl3TRP2QiW0whk3SqJhgdTyBbNKFrCpmkBykMKAgIJaGZGWgWZ7S1O9zhhWkmLNRBIEBIE1LbpcaWBkyTQF9ex0BBL0eDlCYODQ3oSgtI4TumBQBBAnqqFwY3Dmh7uHEA00xad6zfBoz0WdsVPumwYXwMwzAjYaFukJJYO55AX05CEyzSDMNECws1wzBMi8NC3SClEDxDI3SnFTwKlxTDMAwzFizUDeCM8EmbdcZZMwzDBIGjPoIg/LhZ5e1SXscT6B8yoUsPnQkHUIACoAkgk/Bf6xtU5dA98gTIk3DzW+Fwwfm2h8PzmGbCQh0AIQCQB1J+VaVdySwuMpb/ha2sFaULIGO5yBYS6M9r6EoUQEqCSINnZ+FJTnhpdzjhhWkmLNQBKDUO0AwBxwUGbAFDL0V31E451QxA04fjrG0T6QRBCgGrex4SHEfd9nAc9dRDtXAdYvZR18FIn/REIXiVcdYDedFQz0WGYeLFtm04jjPZZtSEhTogngqXzFIWa+J61AzTygghsHPnTth263XuYaEOhMBgQYbOODR0IJMgHlEzTAtjmiZ0Xcf27dtDizU3DphMhIDWYFq4rnM9aoZpZYQQmDZtGgzDCCXWAwMDsbXiYqEOSNpSDaeFt3AVRYZh4Iv1jBkz6hbrgYEBZLNZpFKpWOziqI8gkALQmOuCCCCSIHcIymnd2WUmGMrNgzgefkoipcSMGTOwY8cObN++fcLWXCWRzmQysdnEQh2AUuMA5YT/YpInQZ6BYvZlFIuFCK1jJgNSDqTROdlmMDERVKwrRbqzsxMDAwOx2MNCHYBSHLVsoEuPkIAQElbmAFgpHlG3O8rNg9x4/JFMazCRWI8U6ThhoQ6IEBKigaaHQvj+L6E3JvhM66C81gvjYqJlLLFupkgDLNQMwzDjMlKsLctCoVBomkgDHPXBMAwzISWxJiIUCgUkEommiTTAQs0wDBOIXC5X/nexWGxqBiMLNcMwzARU+qR7e3tDJ8WEhYWaYRhmHEZOHJbcIM0Ua55MDEApjtproKqS8iSUp6HY9woKBa5H3e5wPerdg7GiO+pNimkUFuoAEAEQGkQDOeCCBISS0MwMNIsz2tod7vAy9ZkoBK+WWMcFC3UQSEJIE1JrII4avljrqV4Y3Dig7eHGAVOboHHSI8U6kYjnKYt91EEQQMFpsCITwGVOGaYNqDeZpdJnHVcKOQt1EAgoOgK5QnixJm4cwDAtTy6XC5VxWBJrXY/HSdF2Qn3bbbfhne98JxKJBI4++mj86le/GnPb1atX+2nbFUu4RxMFyyDkiuHEWhG34mKYVsd1XQwODobOOJRSoqOjIwbL2kyo77vvPixfvhxXXXUVfvOb3+DQQw/FkiVL8Oabb465TyaTwRtvvFFeXnvttVDnThiEtFW/WCsC+nMCLnHjAIZpZRzHQUdHR0MZhzKmovNtJdQ33XQTzj//fJx77rl497vfjVWrViGVSuGuu+4acx8hBHp6esrL7NmzQ58/nahPrMsirfxWXNw4gGFaF8MwkE635kx/20R92LaNZ555BitWrCivk1Ji8eLFWL9+/Zj7DQ4OYu+994ZSCu9973vxz//8zzjooIPqO7nw42aVR0gaACkNgwUdpFykrNqOZ0VAdsiAqyS6kjYEAM+VcPNb4XDB+baHw/OmHnH5l6OgdS0bwfbt2+F53qgR8ezZs/HSSy/V3GfevHm466678J73vAf9/f244YYbsGjRIjz//PPYc889a+5TLBZRLO5KSMlmsxACAHkg5Yty0nBAZCBXNEHkIWVWt5gnAvoLCXgKyCTy0IWC60kQafDsLDzJCS/tDie8MM2kbYQ6DAsXLsTChQvLfy9atAgHHnggvvWtb+Haa6+tuc/KlStx9dVXV637ypVfgtCS0Ixd7o5OA5CaQK6YgtQI6YQ/vFIEZHMCCsC0DoKh+49SSgJSCFjd85Bozacrpg44jpppJm3jNZ05cyY0TcO2bduq1m/btg09PT2BjmEYBhYsWIBNmzaNuc2KFSvQ399fXv70pz+Nue1In3WlT7o7RTCm9M8gwzDNom2E2jRNHH744Vi7dm15nVIKa9eurRo1j4fneXjuuefQ29s75jaWZSGTyVQt41Ep1tuzkkWaYZjIaSs5Wb58Oc4++2wcccQROOqoo3DLLbcgl8vh3HPPBQCcddZZeMc73oGVK1cCAK655hq8733vw/7774++vj587Wtfw2uvvYbPfOYzkdqVHBZqwA/BY5FmGCZK2kpSTj/9dLz11lu48sorsXXrVhx22GF46KGHyhOMmzdvropj3LlzJ84//3xs3boV06ZNw+GHH45f/OIXePe73x2ZTSV3hxAEQwNsVyBXQNlnzTAM0yhtJdQAcPHFF+Piiy+u+dq6deuq/r755ptx8803x2ZLLZ90roDy6JrFmmGYKGg7oZ4siFRVCrgioD+vwfMIXWkPuuaH5aUsgCAxWJAgENKWGt4fIJIgdwjKUZP0LpioUG4exPHwTJNgoQ5AqXGAcvwvph8nnYJHhIyVh6YUVIX2JiVAuonckAVyi0iZNsiTIM9AMfsyisXCJL0TJipIOZBG85qbMrs3LNQBIAUILQlpDMdJ5zUoAN0dHgytdlB0hwGIokSukIbQkzANBSEkrMwBsFI8om53lJsHufnJNoOJEGrhqmks1AERQoIgkM0LeAroThMMffwqSx0Jv2FArqhBKQlNA4TuCz7T/iiveV2omfixbTu2wv+N0jZx1JMNhUxmKcVZ520Bl+tRM0zLQkTYuXMnlGq9J14W6oDkiuGTWdIJQsokFmqGaWFM04TrutixY0dosXYcZ+KNQsBCHQQhfXdHAxmHSYswgaeEYZhJREqJadOmwXGcUGJt2za34ppsOhKq4YxDFmqGaW0Mw8DMmTPrFmvbtrF9+3ZuxTWpEEHjK8UwuwWmadYl1iWRNgwjtlZcHPURACEJ5BXgNdCdVnkSytNQ7HsFhQLXo253uB711KYk1tu3b8eOHTswY8aMmm22KkV6xowZyOVysdjDQh0AIgBCg2igl5YgAaEkNDMDzeKMtnaHO7xMfSYS65EiHVe/RICFOhgECGlCavV3IC8h4Iu1nuqFwY0D2h5uHLB7MJZYN1OkAfZRMwzDjMtIn3WxWGyqSAMs1AzDMBNSEuvK6I5miTTAQs0wDNPysFAzDMNMQGkkXRpZN5rBWC8s1AzDMOMwcuLQsqxQSTGNwFEfQRB+3KzywsdjkSdAnoSb3wqHC863PRyet3swVnRH0DjrqGChDoAQAMgDqfAJL6QkiDR4dhae5ISXdocTXqY+E4Xg1RLruGChDgApAaEloRnh46iVBKQQsLrnIcFx1G0Px1FPbYLGSY8Ua9M0Y7GHfdRBEH6zAIZhpj71JrNUxlkPDg7GYhMLdUAGCxJOg65lrkfNMK2N4zihklkqo0HigIU6CKSgSaAvL0KL9VCRO7wwTCujlMLOnTtDZxyaponOzngaHrNQByRtKeghxTpXEMjbgutRM0wLY9t2wxmHhhFPQ1QW6oAIAXSlqW6xzhUEckWBlMkdXhimlRFCYNq0aU1LC68HjvoICJGCAJBJAf15DX05oCvtwRhHfHNFiVxBIJ3wYOoKtitB7hCUwzOT7Y5y8yCOh59SmKYJIcJHdsUJC3UAhATIG4IaHkZnDKDfS6FvUCJj5WFoo4U3b5vIOxZSxhCS0obrSJBnoJh9GcViodlvgYkYUg6kEY8/kpkcWlWkARbqQJAChJaErHA/dRv+yHrAzowaWeeKEnlXIp1USFsWAAtCAkJIWJkDYKV4RN3uKDcPcvOTbQazm8BCHRAhZNUvriaA7jTQnxPoz+vlDuW5gkC+KNCRIKQTAoA2vL//iy30asFn2hfl2ZNtArObwELdAHJ4grE/J9CXFzA0wHYF0hYhneBCEK3CEy9tifyYBgpIiBz+9b4nMYBoU4dv//TxkR6PaX9ab3qzzSiJNZGA7QqYOos0wzDRwkIdAUPFXS4Rx0PDGYwMwzCVsFA3SClOOm0RZmbCJ8UwDMOMBQt1A1SKdDpBZTcIizXDMFHSdpOJt912G772ta9h69atOPTQQ3HrrbfiqKOOGnP7+++/H1/+8pfxxz/+EQcccACuv/56nHTSSXWdsxRH7Tm7inXkbQN520TKtJHQHHjOru07TaC/kMDOQYlMogBDU1CehPI0FPteQaHA9aibyWyZjfyYEi5csiI/LsPUoq2E+r777sPy5cuxatUqHH300bjllluwZMkSbNy4EXvssceo7X/xi1/g4x//OFauXIm//Mu/xL333otly5bhN7/5DQ4++ODA5yUCIDSI4dTSfFFD3tGRtlykLACojrcTALpSHrJDEtliCl1J24+jVhKamYFm8VC7mQxR9JO7GhwI8KQx0xxCCfWHP/xhHHPMMbjqqquq1u/cuROnnnoqHn300UiMG8lNN92E888/H+eeey4AYNWqVXjwwQdx11134fLLLx+1/b/+679i6dKl+PznPw8AuPbaa7FmzRp84xvfwKpVq4KfmAAhTUhN+HHSTilO2sBIkS4hAXR3+HHW2UICHRZBaAJ6qhcGNw5oKlmK3sNXCs9jpg5xlSiNglCf4HXr1uEb3/gGli1bhlxu14fVtm38/Oc/j8y4SmzbxjPPPIPFixeX10kpsXjxYqxfv77mPuvXr6/aHgCWLFky5vYTMdInPRGVPutsQaBJDYsZhgmB4zhVetZKhB5qPPLII9i6dSve97734Y9//GOEJtVm+/bt8DwPs2fPrlo/e/ZsbN26teY+W7durWt7ACgWi8hms1ULABSc+kS6RFmshR+6xzBMa2IYBgYHBzEwMBD6GHF1JA8t1L29vfj5z3+OQw45BEceeSTWrVsXoVmTx8qVK9HV1VVe5s6dC0Ci6ITPOJQC6EwRWrjmC8Ps9ui6jo6ODmSz2VBirZRqrVZcpZoXlmXh3nvvxSWXXIKlS5fim9/8ZqTGVTJz5kxomoZt27ZVrd+2bRt6enpq7tPT01PX9gCwYsUK9Pf3l5c//elPgAAso7GMQyEwbklUhmEmn3Q6jUwmU7dYK6WwY8eO1mrFRSNm0a+44gp8//vfx4033hiJUbUwTROHH3441q5dW16nlMLatWuxcOHCmvssXLiwansAWLNmzZjbA/6PTyaTqVpAQMJofIafR9QM0/p0dnbWJdYlkXYcJ7ZWXKGiPl599VXMmjWrat2pp56K+fPn4+mnn47EsFosX74cZ599No444ggcddRRuOWWW5DL5cpRIGeddRbe8Y53YOXKlQCASy65BMcccwxuvPFGnHzyyfjBD36Ap59+GnfccUd9JxYKpBwoL7xYkydAnoSb3wqHC843lYx4O/Jjcnje1KYkuKU5qrEEuFKkZ86ciWIxnhyJUEK9995711x/0EEH4aCDDmrIoPE4/fTT8dZbb+HKK6/E1q1bcdhhh+Ghhx4qTxhu3ry5qo3OokWLcO+99+KKK67AF7/4RRxwwAF44IEH6oqhBoZHwuSBVPjZQFISRBo8OwtPcsJLM0mK8JNDY8EJL1OficR6pEibptlaQj2ZXHzxxbj44otrvlZrQvO0007Daaed1tA5S40DNCO870JJQAoBq3seEhxH3VS2vRVfmVNmajOWWNcS6ThpO6FmGIZpJiPFOp1ON1WkARZqhmGYCakU62w2CyFE00Qa4Op5DMMwgUind/ksLctqmkgDPKIOjDswBDsXfjLRJQkXGvqe/gNcnkxsKgfGcVBpQ5oFfHLTS6BitCFZ/9/Tv430eMzE5DSFoa48HCWgY/RcFIEwqCl4AtBJYCCbh7t1JxKqeqw7hHgiulioGYZhxqFSpDs8CZ0EClJhSBIANUqs44CFOiiCANFgHj9JQNr+wrQ30gHAVbamOrVEGsCwODdPrFmoAyAkIDQHQjoTbzzWMUgDFCBTb0Pq+QitYyYFoQCveT5KpvmMJdIlminWLNQBIAWQZ4AofBw1kQRIh8pPh5IcSN32SAdSD//DzbQ2E4l0iZFiHddDFgt1EIQEKeEPrcNCEoAAlAlw6vEUgevWTkWCinSJSrHWYvpqc3heQIZgotGOTqqBETnDMPFTr0iXSCiJpBJwYqqQyUIdBCIoCAxQIrRYeyTgguucMkyrQgDyIUS6REJJGDE9ZLFQB4KQhA0PMpRYuyQxSBZXW2OYFsYTBBVSpEtEUA25JizUAdEEoVMU6hZrl/ztNRB09mkyTMtCAFINiHScsFDXgS5UXWK9S6QV0qLIjQMYpoXRSUBrQZEGOOojEH4ctQ2huTAAZJSNrNeBAWEgow3WFGBXaRjwOqBJBxltEB40QBmQqe0cRz0VEB5A/PWZSrSmRPvwJy0ARABIAyl/CK0B6JR5DHhpZKkTnTJfJdYuSQx4aWjCQ6cY8vclCZAEuYlRrcyYNkS6EILvI9McWKiDQACp6ogNHUCnKGKAEhjwOtApChCi2t3RCRuCdN/5RRKABNkdIGlMxrtgokTaEGZhsq1gdhPYR90AI33WTqVIDws3wzBMo7BQN0hJrF3SMKCSkCAWaYZhIoWFmmEYpsVhoW6Qkk9aFx465VDDGYwMwzAjYaFuAHeET9qoM86aYRgmCBz1EQQBCOkBclebHZckBlQSmnCrwvN0AJ3kYsBLYwAmOsXwayQBEhDmIIQ2NClvg4kQ6frNJBimCbBQB0AIAMLzxRrDySwqBU26NRNeDHjIiAE/KYaSyMjhbZSC0AsQOgt128MJL0wT4U9aAPzGASaItBFx0g7gWTVLLWkAOmFjQCWQVV1IwgaEBpWfCcXNbduf4ea2zNShlZ+P2EddByN90hOF4FXGWefIYp81w7QwriB4LerOYqEOiEciVDLLLrHmetQM08oI+PWo3RYUaxbqQAgMwQydcagLhQ5RBLV02ReG2b3RSEASMNiAWDsxfcVZqIMgRMMZh5rgetQM08oI+PWotZBiXZCKW3FNNknYDaeFyxZ8pGIYZhcCAh0hxLog/ea2cbXi4qiPIJCC0AgQDfaCJwlI21+Y9kY6ABr8PDAtSUmsBzWFQU1N2JqrJNJJJWIrYcxCHQC/cYADIZ3wxyANUIBMvc2NA6YCQgGeOdlWMDERVKwrRTqhJIZi+vFmoQ6AH0dtgBpo0+M3DtCh8tOhZDpC65hJQTqQevgfbqb1mUisR4p0nLBQB4XEcPH/sPtLAAJQJlo7tJ4JDk8OT3XGEutmijTQRpOJb7/9Ns4880xkMhl0d3fjvPPOw+Dg4Lj7HHvssRBCVC2f/exnm2QxwzBTgZETjINac0UaaKMR9Zlnnok33ngDa9asgeM4OPfcc3HBBRfg3nvvHXe/888/H9dcc03571QqFbepDMNMMUpi3acrOIJgUPNEGmgToX7xxRfx0EMP4de//jWOOOIIAMCtt96Kk046CTfccAPmzJkz5r6pVAo9PT3NMpVhmClKUe5yWbqC4AoaNxokStrC9bF+/Xp0d3eXRRoAFi9eDCklnnrqqXH3/f73v4+ZM2fi4IMPxooVK5DPjx9xUSwWkc1mqxaGYXZvKn3S3W74pJiwtIVQb926FXvssUfVOl3XMX36dGzdunXM/T7xiU/ge9/7Hh577DGsWLEC99xzDz75yU+Oe66VK1eiq6urvMydOzeS98AwTHsycuIwbFJMI0yq6+Pyyy/H9ddfP+42L774YujjX3DBBeV/H3LIIejt7cXxxx+PV155Bfvtt1/NfVasWIHly5eX/85ms7jrzlUQmg2huTX3CYIfR21AprZzHPVUgOtR7xaMFd1Rb1JMo0zqJ+2yyy7DOeecM+42++67L3p6evDmm29WrXddF2+//XZd/uejjz4aALBp06YxhdqyLFiWVbWOCABpIBX+l9OPo5YgNxFb9hLTRKQLwSUBpjQTheDVEuu4Im8nVahnzZqFWbNmTbjdwoUL0dfXh2eeeQaHH344AODRRx+FUqosvkHYsGEDAKC3t7c+Q0mCVIPVVkgCkCC7AySNxo7FTD7ShuDGAVOWoHHSI8XaCP/QPS5t4aM+8MADsXTpUpx//vn41a9+hSeffBIXX3wxzjjjjHLEx5YtWzB//nz86le/AgC88soruPbaa/HMM8/gj3/8I3784x/jrLPOwoc+9CG85z3vqc8AAdgRPObyQJphWp96k1kqfdaFmIa+bSHUgB+9MX/+fBx//PE46aST8IEPfAB33HFH+XXHcbBx48ZyVIdpmnjkkUdwwgknYP78+bjssstw6qmn4n/+53/qPzkBRegYUuFHwkTgxgEM0+IUQ2YclsRaTkXXRz1Mnz593OSWd77znVW+37lz5+LnP/95RGdXsOBiiExAAck6izMRATmyGi6TyjBMfHgCKApCSslQySwCAhaXOZ1cTOHCgKpbrImAAUrAg0ACMTmwGIZpGE8QrAbTwuMai7FQ10FSOoBCYLHeJdISHaIIJdrG08Qwux0aCViqNR97WaiDIAAhPUC6SEoXUB6GVAKAh+QYTQB8kU7Bg0Cn5hePUmRAmIMQ2lATjWdiQboAh+dNKbQWvp0s1AEQAoDwfLEGkJJDEJ5CXiUhSCGpFau2JwIGVAc8SGT0AejSg0saoBSEXoDQWajbHk54YZoIf9IC4DcOMEG0K2ojAYDIRd5Ngzyj7AapdHd0igI0pYOU7ie8QIPKz4SSxdonYtoHaUNyHDXTJFioG2CkzzohnCqR1hvtscgwDAMW6oapFOshMiEEsUgzDBMpHIYQAQmxK/pDh8cizTBMpLBQN0jJJy0EwRAuHGosg5FhGGYk7PpogJETh7pQGFL1J8UwDMOMBwt1UAQBFS4NX6STfpy0zJfdHUmtCCjyxZqoOs6aJCBtf2HaG+kAYBcX0xxYqAMgJCA0B6IyBM/rgCeAjJaFLqsT/FOaDeElkFcJCLhIaoXhxgGATL3NjQOmAkIBnjnZVjC7CSzUAfDjqA0QieFklqTv7pBD0EgDeaOr4iWgQHCR91IgpcMQLkA6VH46lExPwrtgIkU6kDq7tqYSLZyYyEIdGBIgJat90sBwQ4DaJIULkMCQsuBBQpMEKBOt/ZFgghNTqTRmUvAEDQti69X74KiPgNSaOAxCUjpIChtFGPDGEXWGYSYXApDXFKgFB1KsHAEZghk64zApHVhw4PHlZpiWRScBJfzO4mHFOq7pZVaOIAgJBdFQxmFCutA4SoBhWhYBIOVJeCHF2hXErbgmmyTshjMONc5YZJiWRiO/pVa9Yu0KwqCmYmvFxUIdBCJoXHuYYXYL9DrFuiTSGoFbcU0mQhKEZkNo4Vtp+XHUBmRqO8dRTwW4HvWUpiTWg5rCoKbQ4UmIGtEglSLd4UkUYooE4k9aAIgAkAZS4UfVRBIgCXITVU14mTZFuhD8lDWlmUisR4p0LSGPzJbYjjyVIIDU6KSW+o4hAUiQ3QGSXLSp7ZE2BDcOmPKMJdbNFGmAfdQMwzDjMtJn7TRZpAEWaoZhmAkpibU7LNYSzRNpgIWaYRim5WGhZhiGmYCST1ofdncoNJbBWC8s1AzDMOMwcuLQCJkU0wgc9REEAQjpATJ8HDVIAiQgzEEIbSg625jJQbp+MwlmSjNWdEfQOOuoYKEOgBAAhOeLddhjEAClIPQChM5C3fZwwsuUZ6IQvFpiHRf8SQsAKQHyTBCFj6UmkgA0qPxMKFmMzjhmcpA2JMdRT1mCxkmPFGstphRy9lEHQQh41HrFxBmGiZ56k1kq46yLDebFjQULdUCGYMJtsPA/Nw5gmNbGC5nMUhJrFdN4jpUjCKQgQRigRGixLiidGwcwTAtT6vASNuNQJ4FEA/EG49E2ynHddddh0aJFSKVS6O7uDrQPEeHKK69Eb28vkskkFi9ejJdffjnU+ZOwoUGFEushZaAIgxsHMEwL4wqCbDAtPC5BbRuhtm0bp512Gi688MLA+3z1q1/F17/+daxatQpPPfUU0uk0lixZgkKh/kkgIYBOUahbrIeUgSEyYcHhxgEM08KUOrw0Ky28Htom6uPqq68GAKxevTrQ9kSEW265BVdccQU++tGPAgC++93vYvbs2XjggQdwxhln1GeAIAip0El5DKgkBshCpxgat+vLkDIxBANJWYQhXDikA9L2F6a9kQ7i65DHTAYaiZYUaaCNhLpeXn31VWzduhWLFy8ur+vq6sLRRx+N9evX1yXUQgJCcyCkAwEgQzayXgcGyEJGDkKvEV895CUwBB0pLY+kVoBLGqAAmXqbGwdMBYQCPHOyrWAipDUl2mfKCvXWrVsBALNnz65aP3v27PJrtSgWiygWd8U5Z7NZkALIM0AVIXqdsDFASWTdDDpl9ch6SJkYIhNJYSMBNRyDLQHSofLToWQ6qrfJTBbSgdSdybaC2U2YVB/15ZdfDiHEuMtLL73UVJtWrlyJrq6u8jJ37lz/BRLDaeD+IiDRKYrQQBhQKbhKB0hiyLMwpCwk4SAp3Kp9AAEok5cpsRhooykeps2Z1BH1ZZddhnPOOWfcbfbdd99Qx+7p6QEAbNu2Db29veX127Ztw2GHHTbmfitWrMDy5cvLf2ezWdz57VU1txUC6EQBA5TAACWgkweHdCSFjaTk0RbDMNEwqUI9a9YszJo1K5Zj77PPPujp6cHatWvLwpzNZvHUU0+NGzliWRYsywp8npJY71RpONBhCJdFmmGYSGmbZ7fNmzdjw4YN2Lx5MzzPw4YNG7BhwwYMDg6Wt5k/fz5++MMfAgCEELj00kvx//7f/8OPf/xjPPfcczjrrLMwZ84cLFu2LFLbCrSrB6ILreEMRoZhmEraZjLxyiuvxL/927+V/16wYAEA4LHHHsOxxx4LANi4cSP6+/vL23zhC19ALpfDBRdcgL6+PnzgAx/AQw89hEQiEZldpTjppLCREE7ZDdKJwrihewzDMEERRMRFdcchm83i5hu/imlaAYkRYXiVIl1ydxABA5SAB4lOsUusXZJwoGFh4g/o4Op57c9w9Tx70/GgYudkW8M0SE5T+FVXHroS0BsI1BuCi+Urv4L+/n5kMpnI7GubEfVk4sdR2xDarkT+Ic/CkNCR0nJIaruE14+zLg7HWZvlOGtBGqAMyNR2jqOeCnA9aqaJ8CctAEQASAMp/+FjSJkYUgkkZQEJ4YLU6NqGnWIIA5RC1u1Ep5YbPpAEuQnwQ8wUQLoQ3OGFaRIs1EEglMW4yt0BBajal1BgOCkGCQx4HUihCAgJsjtA0qi5D9NGSBuCGwdMKTzRuoLI4Ql1UMsnPR6VhZwGyYLi5gMM07J4glCUrRkA0Ko/IC3HoDShSIOhu/B0YBDBR8WCPChHYkgY2DS9C5YRU9FapmkYKCAhcnjkkPkYwIzJNodpEM0dQvdbL0B6Dt7WLSgtXB0X4cTzlMUj6kBIuEqHobkw9PqbogkBmJoLNKGtPMMwIRESnmZA82xIL0SFSyJoKp5kNx5RB0EAugwn0uVDCEDjySeGaWlIGvCEhDYs1IFH1kTQ3SGImAIFWKiDQICmReC7Yhc1w7Q8JXEOLNZlkVZwtXgCBViogyAUdLjQRXjfsickQIROsRMJwQkv7Y4GB4JdWVOWwGJdKdJ6ElDxzD+xUAdACEDAg4ZGboKEgoAlckiKochsYyYHCRcuBS/exbQfE4r1CJEmqUGwUE8epAAHFkDhH2sU+VK/Xe0JK6abyTSPUtQHM7UZU6xriHScsFAzDMOMwyixlkZTRRpgoWYYhpmQSrEuCXazRBrgOGqGYZhAqIrSD0pqTRNpgIWaYRhmYoZ90oAv0lJ54ZJiQsKuD4ZhmPGoMXFIFS6QsOnm9cBCHRABBYHwSS9i+D8DRRjgnortjo4iJMJnqjJtwhjRHXUnxTQIC3UAhAQM2LBEeIH1hAaHdMyQf0ZKchx1uyPhwabkZJvBxMkEIXjNFGsW6gD4cdRmQx09SnHUO9QcDMZUuIVpHjqKMDnDdOoSME56pFjHlavKQh0EIaFINnQTCAIECQcWJJo3W8zEh95QpirTstSZzFIp1l5MBX046iMgrqej0cJY3IGLYVqdcBmHSjPhaSa0mLKOWaiDQAQigaJrhBZbRQKK+HIzTCujucXQGYdKM+HJeJwUrByBIOiaCyIZSqyVErBdA9w4gGFaF6G8htPCiYV6cpGSYOl23WKtlEDRNSGE4sYBDNPSEFw90dSMw6CwUNdBvWJdKdKm5nLjAIZpYUhofixuC8JRHwHw46iLfhy1BpiigJyTgucKpIwcRA0B9pSGnJuCIWykjBwUSTjKwEz5OsdRTwG4HvUUpNYXuUVgoQ4AEUDQ4JV8zBJIGEUMOUkMOp1IGkNV99hTEkNOElIoWEYRSujwSIKgoUhpiAbisZnWgDu8MM2EFSMIBLjQISqjNgRg6i6Kromck4alOxCi2t1h6B48mADtSngZoGmwieNv2x1uHMA0k9Z0yLQJI33WnpJlkS4JN8MwTKOwUDdISayVkig6BgSIRZphmEhhoWYYhmlxWKgbpOSTllLBMhwQGstgZBiGGQkLdQNUThxaugNNqlBJMQzDMOPBUR9BEH6lNF3sitbwlITtJqEJtzo8TwM04WDIScJxtfJrnpAAETrFTiS4PGbbw+F5TDNpG6G+7rrr8OCDD2LDhg0wTRN9fX0T7nPOOefg3/7t36rWLVmyBA899FBd5xYC8IPrfKH2lIaCY0EXbs2EF00CmuEh56RQdCykjBwACQUBS+SQFJzw0u5wwgvTTNpGqG3bxmmnnYaFCxfizjvvDLzf0qVLcffdd5f/tqz6v1x+4wALIKO6dofuwUaqdq0lARi6QtE1kXV0GNKFgobtak9YMZVCZJoHx1FPQYhatsxD2wj11VdfDQBYvXp1XftZloWenp5IbBjpk54oBK8Uuld0TdieDl3yozLDtCqCPIAk0IKNPab8ZOK6deuwxx57YN68ebjwwguxY8eOUMepV6RLVCbFeNSiP9cMwwAQ0N0ChGq9psVtM6IOw9KlS3HKKadgn332wSuvvIIvfvGLOPHEE7F+/XpoWu1fzWKxiGJx12RfNpsFIOB6OjQtXMahlARTd+CqKX25GaatIakBpKC7Q6FrUoup2OHl8ssvhxBi3OWll14KffwzzjgDf/VXf4VDDjkEy5Ytw09+8hP8+te/xrp168bcZ+XKlejq6iovc+fOBYSAEI1lHEpBkEKF25lhmKbg6RZISL8dV50ja+nZsbXimtQh3mWXXYZzzjln3G323XffyM637777YubMmdi0aROOP/74mtusWLECy5cvL/+dzWZx53fugK65DaeFc1o5w7Q6Aq6ehO4O1TWylp7tN7eNqcPLpAr1rFmzMGvWrKad7/XXX8eOHTvQ29s75jaWZY2ODCEFKRQEwo+IxfB/Boow4IQ+DtMa6ChCovV8mUwEiPrEuizSmgmKKcutbZymmzdvxttvv43NmzfD8zxs2LABALD//vujo6MDADB//nysXLkSf/3Xf43BwUFcffXVOPXUU9HT04NXXnkFX/jCF7D//vtjyZIldZ3bbxxg+40DQuIJDQ7pmCH/zI0DpgASHmxKTrYZTFwEFOtKkVaaCeHGk8zWNkJ95ZVXViWvLFiwAADw2GOP4dhjjwUAbNy4Ef39/QAATdPw29/+Fv/2b/+Gvr4+zJkzByeccAKuvfbaumOp/ThqE2ig4H+pHvUONQeDikfU7Y6OIkzOMJ3aTCDWI0U6TtpGqFevXj1hDHXlY0cymcTDDz8c2fkJsqGEYYIAQcKBBdmCcZpM/ejgxKUpzxhi3UyRBtpIqBmGYSaFEWKtpAapvKaJNLAbJLwwDMM0zLBYA4BUHpTUmibSAAs1wzBMIGTF3JJUXlMzGFmoGYZhJqDSJ+0Y6dBJMaHP35SzMAzDtCmjJg6H3SDNFGueTAyAH0ddbDCOWsIhAzPl6xxHPQXgetS7B2NGd9SZFNMoLNQBIAIIGrwGAvQ8SBA0FCkN0UA8NtMacIeXqc+EIXg1xDouWDGCQBIudAgK7ykqJbwM0DTYxPG37Q43DpjaBI6THinWIp5RNfuogyAAz4vgUvEAjGFanrqTWSp91l48Wccs1EEgwFU6HDf8ryURuHEAw7Q4QjnhMg7LYh3Pd5yFOhAKunTheOHEmgiwPR0t25CNYRiAFDTPCZ9xKAQ8aURvF9hHHRhNU9CI4Hj+JTP0YCE5REDRNUAkoUkui8kwrYogBU8zGss4jGlEzUJdByVxDirWlSJt6g6IH2AYpmUhIUExjYgbhYU6CMKvlKYLF7oBaMKA7ZrQhAtTrz15QAQMuUmAgJThRwd4Sken2IkEl8dsezg8bwoiWncgxUIdACEAP7jOD6tL6i4kFAquBQkFS68WXiIg76RBBHQYg9CkB09JKAhYIoek4ISXdocTXphmwkIdAL9xgAVQxWORBmhEyLspOGSW3SCV7g5Lt+EKCy7tiqPervaEFVMDTKZ5cBw100xYqBtgpM9a17wqkZaSH40ZhmkcFuoGqRRrx9MhBFikGYaJlNb1nrcRurYr+kMKxSLNMEyksFA3SMknLQSgSQVPyYYyGBmGYUbCro8GGDlxKCXBcbW6k2IYhmHGg4U6IAIKAqr8NxFguxaIBCy9AG3Y3WHqCgIExzMgQDB0d3h//z8DRRiIp3AL0zx0FCHBP8RMc2ChDoDfOMAuNw4gAnJuGoIUOo0c9BGp4ZYBFISFopuALhQSehGe0OCQjhnyz9w4YAog4cGm+OoPM0wlLNQB8OOoTYD0YXeHBUUCll6EJ0x4NeYOhQZopDDkpuGS6Se9QMMONQeDikfU7Y6OIkzOMGWaBAt1QAgSapRPWoDGqYin6woEF7ZnQCMJKf3EGQmebJwK6ODEpamEUB6gtWZ8RWta1YLUmjgMgqF7MDQXrqdBcT1qhmlhCJpb9L/sLQYLdUBcTw+dcWjoHnTNAykWaoZpVUhoEKSgu0PhxZrUxNuEgIU6CEIOR3eEzzg0NA+CE2EYpnURAq6eCC3WQnncimuy0TW34YxDKVioGaalERKunqxbrIXyoLtD3IprUiHitHCG2U0gqdUl1rtEWnIrrslESIKBYjmOOgyekHDIwEz5OsdRTwG4HvXUpiTWujsE3R2CqydrttmqFGlXT0J4diz2sFAHgAggaPAa6OjhQYKgoUhpCOLL3u5wh5epz0RiPVKk4+qXCLBQB4MAFzoEhfcUlRoHDNA02MTxt+0ONw7YPRhLrJsp0gALdWAUCagGwusUCSgCbJcv+VRAwQCEBeHa0MCurHZHusXh0DoBUSPCztUs6G4BupOHpxnQ3aLvk9ZMCFIoP1zFFJ7XFqrxxz/+Eddeey0effRRbN26FXPmzMEnP/lJfOlLX4Jpjt3avVAo4LLLLsMPfvADFItFLFmyBN/85jcxe/bs+gwQGhxHg9tg1AaRwBs7ZtaM/lAkynHWQtKkRIgQAUoNPzUIgiYI4yRexmQE4JEAhpODpFRxD1ZqMtH9KBXpsuh1GNgajxFEELSrjgzJyfm6iorWcSS02EePNSHlCyL8buGRN6IlBc0t+jnDY70/IkhyoSl7+E8J6YwozLU7C/VLL70EpRS+9a1vYf/998fvfvc7nH/++cjlcrjhhhvG3O8f/uEf8OCDD+L+++9HV1cXLr74Ypxyyil48sknQ1hBQEM+SQGAoAkFWeMnWykN3rBI6kJBk82vzKYg4Cg/vV0KQOpu07+TBMD1jHIWp66pSfnRmuh+CPj3kZQGFVtJAAV9eHKKhIQSEpPxy6kRlUXS041J6dYtSEEq/x4oTfo/GJGeQEADhktCjHWNqwtG+J/K5tyPthDqpUuXYunSpeW/9913X2zcuBG33377mELd39+PO++8E/feey8+/OEPAwDuvvtuHHjggfjlL3+J973vfXXbEYVoyRqjM8fV4CkN5nBJVMfTIQU1tZ61UgKOZ0DTFAzNg+0acJQOS3eaJtZEgO0ZgBBIGA4cT4PjGU1vbRbkfojhH10MTxJHjZ88UQRJDZ5mQncL0Dy7Kf7QMkTQ3SEIEFwjCc2zoXtFuHoSJJtXr0Z6NjTlwtP9KBvNs+EJCaWN/TRdL4LE8HUVta+vUpDDZY4VJCT8vxVE9Q9XTB/Tto2j7u/vx/Tp08d8/ZlnnoHjOFi8eHF53fz587HXXnth/fr1Y+5XLBaRzWarljgpNRowNNevCzJcG8Tx9KZ1ilFKoOiaEELB0h1oUsHSbRDJ4fom8dswspaKb4MDIRSKrtnQ/EA9tML9GDlRRVIPlYTRECWRJlVlAwnpr1fNGURIz/aFWTOhhhdPM6F5NmRMoXCjUKpce1wJDZC7nqIkebG5OyppixH1SDZt2oRbb711XLfH1q1bYZomuru7q9bPnj0bW7eO7VNcuXIlrr766qp1X7nqSgi/fl5om0uPVBrs4ZEYYLsGPE8ioRdg6rtitHUD0IQB2zWhCbfqtajxlITtJqEJF0ljaNdgQgM04WDIScJxterXIoYIGHKTAAEpIwdNDl9nAeiGjSEnCdvVkTSGdr0WA/Xcj7hC88aKJgga1xsJo0R6+AdKiFE2xDmyHinSJUr/1oaFOsqR9ShGinRp9CwllPLrkkvyfGWI0SU0qSPqyy+/HEKIcZeXXnqpap8tW7Zg6dKlOO2003D++edHbtOKFSvQ399fXv70pz8Nu6GooUUM/1+DBw0uXFeD7RpI6AUk9SFocKuWpD6EhF6A7RpwXW3U61EsUISCY0EXLjqMAeii+nVT2ugwBv3RrmP5EykR2yDJRdGxQAR0GIMwpV31eqVtBccCFMVyLeq9HxJuVcefKJgo5KvejLlQjCXSZSNFU0bWY4l0iaaMrMcS6bKRsmkj60kdUV922WU455xzxt1m3333Lf/7z3/+M4477jgsWrQId9xxx7j79fT0wLZt9PX1VY2qt23bhp6enjH3sywLljUi44yEP5nT0MSBL9U2kvAcUX68hqahSKnau2iARoS8m4JDZqQ+60p3h6Z7sJGq7V8TgKH77oesE63PeqS7wxUW3DG0R9MJrisx4GQi91lXujuC3g+XDCSM6BoHBI3LjXVkPZFIl42Nd2Q9kUiXiHVkPZFIl42tMbKOgUkV6lmzZmHWrFmBtt2yZQuOO+44HH744bj77rsh5fgPA4cffjgMw8DatWtx6qmnAgA2btyIzZs3Y+HChXXbGpUsuJ4G15NlH+hElLaJsmHuSJ/0RN9zKQmWbqPomii6RiRiXW99byEAS3dQdA0UXTMysR7pk56IXffD8KN3IngmrTd5IhaxDirSZaPjEeugIl0iFrEOKtIlKsW68bPXPkVMx42ULVu24Nhjj8Vee+2FG264AW+99Ra2bt1a5WvesmUL5s+fj1/96lcAgK6uLpx33nlYvnw5HnvsMTzzzDM499xzsXDhwlARH4Bf6rQRFAm4nhZYFEpEOaFVr0iXKIl1FBOMYZswlMQ6qgnGekW6hH8/HNiuCdFgWcuwGW6RukHqFemy8dG6QeoV6RKRukGoTpEuUeEGiYO2mExcs2YNNm3ahE2bNmHPPfeseo2GP6CO42Djxo3I5/Pl126++WZIKXHqqadWJbzUDwEQUOSH5YgQcb2e8icT9TpFoUQUI+uwIl0iipF1WJEuEdXIOqxIlzB0F1IoFF0XEnaokVyjaciRjKzDinSJiEbWYUW6RCQja1KQw8/OdYl0CSmhYvLZC6JmxPq0L9lsFjffdCMgCKUHECnqE2ul5HDUByGdKNZMeAlKWIFpVKSjOFajIh3VsRoVacBPeNGEh+3ObMBTdQtMlLUiQh+rUZGO6FiNinQUx5KeA8MZBBBSpEsoF9d+5Sr09/cjk8mEO0Yt+yI70hRHAJBi+JGIgrtBKkU6igy7MG6QKEUaCOcGiVKkgfBukChEuhLSjLofu6Mu6BPKDRKlSAOh3SBRijQQzg0ilAfN8yeGFWJIT4+AtnB9tAYEKQDAgyJt2A3iDa+rjTcs0gIEKRWIBAS8hmNwTV1BgOB4BgQIhj52NT5vWKSlULD0YmQBApoELL2AomvBdo1xj00E2K413M6sAC2iiA0hgIReRNG1hl0xxXGP7bg6XE+HqTnjXrNA54ZCaYq5nsfuuKqu1eUGiVqkS9TpBolapEuEux9+pkQrijTAQh0MgeGUUV+sFTy4ZAyLtVtzpOwobVikPRjSAw2X8TFRhCYaH8lZBlAQFopuArpQSOijQ8VcpaHopmEIG2kjF31+hAaYooi8k4bryprnIAJybhqCFDqNHPSoa5gIwDKGkHPScF0d5hjnKLgWPE8iqedqXqv6oarU8SDiEHdpzEBiHZdIlwgo1nGJdIl674enWZCqdcvWslAHgQAl5K4o6mHhVqTBJWPUyLpyJK1JQEErp73YsCAjmhYQGqCRwpCbhktm1SjRH0lbkIKg6w5sJOOpQyAAXXdRdC1kneqRte/usKBIwNKL8IQJL6YZEV1XKLrGcJx19cjacXU4ngFDcyA0iSIlGz5fqShTJeOJQ7PqF48r1nGLdIkJxDpukS5Rz/1o9SYQLNSBEaCKmymEHzfpu0E0YDgaRI10d1TsD/i5iRRhWLyuKxBc2J4BgoChe1U+aVN3/C7qkZ1xNFKWIjFMFFwL1nD6dbVPWoyoPRYxAjDL0SCJsh+80iftX6soH21rlKutIQ7NLjJfU6yB5oh0iTHEulkiXSLw/WjxmAoW6gaoFms5fLN3iXSzqAzdUyShSEY2cRiUqtA9x/9yEERTK9+NDN2TQsFTwZOLoqJSHAR5kMprmkiXGCnWAJon0iVGiLWSGqTymibSJVrhfjQKC/UE0LD4EmicyAK/3GWp5jTG2JYAOJ6AjGPCQvhecMfzv4Sm7sFVzZ8YkcKF4/mdmA3NgUcCntfcL4MUHmzPr6qiCQ8QBMeL9loI+HedlF2z5gcBUARI1x/JeZoeW+PT8XCFhD6clONqBqDcqkYAzcCDhK4cSOVBCQ1EBOFGl34fhAnvBym/OQEaHVz7O0cd9cxx1BPwhz/8Afvtt99km8EwTBvxyiuvVNUpahQeUU9Aqeb15s2b0dXVNcnWBCObzWLu3Ln405/+FGnQfVy0m70A29wM2s1ewK+Tv9dee41bKz8MLNQTUCr+1NXV1TYflhKZTKatbG43ewG2uRm0m70AJiwaV/fxIj0awzAMEzks1AzDMC0OC/UEWJaFq666anQzgRam3WxuN3sBtrkZtJu9QHw2c9QHwzBMi8MjaoZhmBaHhZphGKbFYaFmGIZpcVioa3Dddddh0aJFSKVSVR3Mx+Occ86BEKJqWbp0abyGDhPGXiLClVdeid7eXiSTSSxevBgvv/xyvIZW8Pbbb+PMM89EJpNBd3c3zjvvPAwODo67z7HHHjvqGn/2s5+NzcbbbrsN73znO5FIJHD00UeX+3GOxf3334/58+cjkUjgkEMOwU9/+tPYbBuLemxevXr1qOuZSCSaZuvjjz+Oj3zkI5gzZw6EEHjggQcm3GfdunV473vfC8uysP/++2P16tWx21lJvTavW7du1DUWQlT1ew0CC3UNbNvGaaedhgsvvLCu/ZYuXYo33nijvPz7v/97TBZWE8ber371q/j617+OVatW4amnnkI6ncaSJUtQKBRitHQXZ555Jp5//nmsWbMGP/nJT/D444/jggsumHC/888/v+oaf/WrX43Fvvvuuw/Lly/HVVddhd/85jc49NBDsWTJErz55ps1t//FL36Bj3/84zjvvPPw7LPPYtmyZVi2bBl+97vfxWJfFDYDfjJJ5fV87bXXmmZvLpfDoYceittuuy3Q9q+++ipOPvlkHHfccdiwYQMuvfRSfOYzn8HDDz8cs6W7qNfmEhs3bqy6znvssUd9JyZmTO6++27q6uoKtO3ZZ59NH/3oR2O1ZyKC2quUop6eHvra175WXtfX10eWZdG///u/x2ihzwsvvEAA6Ne//nV53f/+7/+SEIK2bNky5n7HHHMMXXLJJbHbR0R01FFH0UUXXVT+2/M8mjNnDq1cubLm9n/zN39DJ598ctW6o48+mv72b/82Vjsrqdfmej7fcQOAfvjDH467zRe+8AU66KCDqtadfvrptGTJkhgtG5sgNj/22GMEgHbu3NnQuXhEHSHr1q3DHnvsgXnz5uHCCy/Ejh07Jtukmrz66qvYunUrFi9eXF7X1dWFo48+GuvXr4/9/OvXr0d3dzeOOOKI8rrFixdDSomnnnpq3H2///3vY+bMmTj44IOxYsWKqq7zUWHbNp555pmq6yOlxOLFi8e8PuvXr6/aHgCWLFnSlOsJhLMZAAYHB7H33ntj7ty5+OhHP4rnn3++GeaGYrKvcSMcdthh6O3txV/8xV/gySefrHt/rvUREUuXLsUpp5yCffbZB6+88gq++MUv4sQTT8T69euhaU2q/xuQkn9s9uzZVetnz55dt+8s7PlHPvrpuo7p06ePe/5PfOIT2HvvvTFnzhz89re/xT/90z9h48aN+O///u9I7du+fTs8z6t5fV566aWa+2zdunXSricQzuZ58+bhrrvuwnve8x709/fjhhtuwKJFi/D8889jzz33bIbZdTHWNc5msxgaGkIy2Xjnnqjp7e3FqlWrcMQRR6BYLOI73/kOjj32WDz11FN473vfG/g4u41QX3755bj++uvH3ebFF1/E/PnzQx3/jDPOKP/7kEMOwXve8x7st99+WLduHY4//vi6jxe3vXEQ1OawVPqwDznkEPT29uL444/HK6+8wqVoQ7Bw4UIsXLiw/PeiRYtw4IEH4lvf+hauvfbaSbRs6jBv3jzMmzev/PeiRYvwyiuv4Oabb8Y999wT+Di7jVBfdtllOOecc8bdJsr6sfvuuy9mzpyJTZs2hRLqOO3t6ekBAGzbtg29vb3l9du2bcNhhx0W6phAcJt7enpGTXC5rou33367bFsQjj76aADApk2bIhXqmTNnQtM0bNu2rWr9tm3bxrSvp6enru2jJozNIzEMAwsWLMCmTZviMLFhxrrGmUymJUfTY3HUUUfhiSeeqGuf3UaoZ82ahVmzZjXtfK+//jp27NhRJYT1EKe9++yzD3p6erB27dqyMGezWTz11FN1R7pUEtTmhQsXoq+vD8888wwOP/xwAMCjjz4KpVRZfIOwYcMGAAh9jcfCNE0cfvjhWLt2LZYtWwYAUEph7dq1uPjii2vus3DhQqxduxaXXnpped2aNWuqRqxxEsbmkXieh+eeew4nnXRSjJaGZ+HChaNCHpt5jaNiw4YN9X9mG5qKnKK89tpr9Oyzz9LVV19NHR0d9Oyzz9Kzzz5LAwMD5W3mzZtH//3f/01ERAMDA/SP//iPtH79enr11VfpkUceofe+9710wAEHUKFQaDl7iYj+5V/+hbq7u+lHP/oR/fa3v6WPfvSjtM8++9DQ0FDs9hIRLV26lBYsWEBPPfUUPfHEE3TAAQfQxz/+8fLrr7/+Os2bN4+eeuopIiLatGkTXXPNNfT000/Tq6++Sj/60Y9o3333pQ996EOx2PeDH/yALMui1atX0wsvvEAXXHABdXd309atW4mI6FOf+hRdfvnl5e2ffPJJ0nWdbrjhBnrxxRfpqquuIsMw6LnnnovFvihsvvrqq+nhhx+mV155hZ555hk644wzKJFI0PPPP98UewcGBsqfVQB000030bPPPkuvvfYaERFdfvnl9KlPfaq8/R/+8AdKpVL0+c9/nl588UW67bbbSNM0euihh5pibxibb775ZnrggQfo5Zdfpueee44uueQSklLSI488Utd5WahrcPbZZ/uND0csjz32WHkbAHT33XcTEVE+n6cTTjiBZs2aRYZh0N57703nn39++QvSavYS+SF6X/7yl2n27NlkWRYdf/zxtHHjxqbYS0S0Y8cO+vjHP04dHR2UyWTo3HPPrfphefXVV6vew+bNm+lDH/oQTZ8+nSzLov33358+//nPU39/f2w23nrrrbTXXnuRaZp01FFH0S9/+cvya8cccwydffbZVdv/x3/8B73rXe8i0zTpoIMOogcffDA228aiHpsvvfTS8razZ8+mk046iX7zm980zdZS6NrIpWTj2WefTcccc8yofQ477DAyTZP23Xffqs90K9p8/fXX03777UeJRIKmT59Oxx57LD366KN1n5er5zEMw7Q4HEfNMAzT4rBQMwzDtDgs1AzDMC0OCzXDMEyLw0LNMAzT4rBQMwzDtDgs1AzDMC0OCzXDMEyLw0LNMAzT4rBQMwzDtDgs1AzDMC0OCzXDBOS73/0uZsyYgWKxWLV+2bJl+NSnPjVJVjG7AyzUDBOQ0047DZ7n4cc//nF53ZtvvokHH3wQn/70pyfRMmaqw0LNMAFJJpP4xCc+gbvvvru87nvf+x722msvHHvssZNnGDPlYaFmmDo4//zz8bOf/QxbtmwBAKxevRrnnHMOhBCTbBkzleF61AxTJ4cffjg+9rGP4YQTTsBRRx2FP/7xj5g7d+5km8VMYXabnokMExWf+cxncMstt2DLli1YvHgxizQTOzyiZpg66e/vx5w5c+C6Lr773e/i9NNPn2yTmCkO+6gZpk66urpw6qmnoqOjo9zxm2HihIWaYUKwZcsWnHnmmbAsa7JNYXYD2PXBMHWwc+dOrFu3Dh/72MfwwgsvYN68eZNtErMbwJOJDFMHCxYswM6dO3H99dezSDNNg0fUDMMwLQ77qBmGYVocFmqGYZgWh4WaYRimxWGhZhiGaXFYqBmGYVocFmqGYZgWh4WaYRimxWGhZhiGaXFYqBmGYVqc/x9fKfy34S1CxwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# plot the fields\n",
+ "for i in range(mode_solver.mode_spec.num_modes):\n",
+ " mode_solver.plot_field(\"E\", \"abs\", mode_index=i)\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As one can note, the use of PMLs can lead to non-physical solutions. In this particular case, the physical mode is only the third one. Hence, when dealing with lossy structures, where PMLs are needed, it is important to carefully analyze the fields to exclude the non-physical ones. One way to achieve this is by looking at the effective index, which is approximately 2.4 for the real mode. Hence, we can just look at the mode closest to this value:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
wavelength
\n",
+ "
n eff
\n",
+ "
k eff
\n",
+ "
loss (dB/cm)
\n",
+ "
TE (Ey) fraction
\n",
+ "
wg TE fraction
\n",
+ "
wg TM fraction
\n",
+ "
mode area
\n",
+ "
\n",
+ "
\n",
+ "
f
\n",
+ "
mode_index
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1.934145e+14
\n",
+ "
0
\n",
+ "
1.55
\n",
+ "
2.818499
\n",
+ "
3.787846e-01
\n",
+ "
133368.971246
\n",
+ "
1.00000
\n",
+ "
0.969206
\n",
+ "
0.648322
\n",
+ "
1.405865
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
1.55
\n",
+ "
2.732204
\n",
+ "
4.492293e-01
\n",
+ "
158172.351666
\n",
+ "
1.00000
\n",
+ "
0.897111
\n",
+ "
0.669513
\n",
+ "
1.245057
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
1.55
\n",
+ "
2.405265
\n",
+ "
3.473466e-08
\n",
+ "
0.012230
\n",
+ "
0.97956
\n",
+ "
0.726840
\n",
+ "
0.814311
\n",
+ "
0.185759
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " wavelength n eff k eff loss (dB/cm) \\\n",
+ "f mode_index \n",
+ "1.934145e+14 0 1.55 2.818499 3.787846e-01 133368.971246 \n",
+ " 1 1.55 2.732204 4.492293e-01 158172.351666 \n",
+ " 2 1.55 2.405265 3.473466e-08 0.012230 \n",
+ "\n",
+ " TE (Ey) fraction wg TE fraction wg TM fraction \\\n",
+ "f mode_index \n",
+ "1.934145e+14 0 1.00000 0.969206 0.648322 \n",
+ " 1 1.00000 0.897111 0.669513 \n",
+ " 2 0.97956 0.726840 0.814311 \n",
+ "\n",
+ " mode area \n",
+ "f mode_index \n",
+ "1.934145e+14 0 1.405865 \n",
+ " 1 1.245057 \n",
+ " 2 0.185759 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mode_data.to_dataframe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In most cases, the effective index is not known beforehand. To automatically filter the correct mode, we will create an auxiliary function that will compares the field energy around a given radius at the center of the simulation plane with the fields outside it, and return `True` if the field energy inside is higher than the energy outside, and `False` otherwise. Also, we will define a function to iterate through the modes and return the first valid mode."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# function to decide if a mode is a valid solution\n",
+ "def isMode(mode_data, mode_index, radius=1, freq_index=0):\n",
+ " E = abs((mode_data.Ex**2 + mode_data.Ey**2 + mode_data.Ez**2))[\n",
+ " 0, :, :, freq_index, mode_index\n",
+ " ]\n",
+ " center = (\n",
+ " E.y.min() + (E.y.max() - E.y.min()) / 2,\n",
+ " E.z.min() + (E.z.max() - E.z.min()) / 2,\n",
+ " )\n",
+ "\n",
+ " bmInside = (abs(E.y) < (center[0] + radius)) & (abs(E.z) < (center[1] + radius))\n",
+ "\n",
+ " if E.values[bmInside].sum() > E.values[~bmInside].sum():\n",
+ " return True\n",
+ " else:\n",
+ " return False\n",
+ "\n",
+ "\n",
+ "# function to find the first valid mode\n",
+ "def findMode(mode_data, radius=1):\n",
+ " for i in range(mode_data.Ex.shape[-1]):\n",
+ " if isMode(mode_data, i, radius) == True:\n",
+ " return i\n",
+ " return None"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAHWCAYAAAB+EF5VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCrUlEQVR4nO3deXwU9f0/8NfMbnaTEBIIBJKUcHqgoMAPAUFRhMihVUHkK2oLqEVFpKVoFSrl6pdGrVW+VQS1QKyVFu23YJVvUUCOqohCpZ6gIJZDuUlCDnY3O+/fH7M72SXXbjLJ7s68nj5GNrMzs+8ZyL7nc44iIgIiIrIdNdYBEBFRbDABEBHZFBMAEZFNMQEQEdkUEwARkU0xARAR2RQTABGRTTEBEBHZFBMAEZFNMQFQs9i8eTMURcHmzZtjHQoRBTABkKmee+45FBYWxjqMBlm5ciUWLVoU6zDCLFu2DBdddBGSk5Nx/vnn45lnnol4X4/Hg0ceeQS5ublISUnBgAEDsH79+hq3ff/993HllVciNTUV2dnZ+OlPf4rS0lKzToPilRCZqEePHnL11VdXW+/3+6WiokL8fn/zBxWh66+/Xjp16hTrMAxLly4VADJ27Fh54YUX5Mc//rEAkMceeyyi/cePHy9Op1Meeughef7552XgwIHidDrln//8Z9h2H3/8sSQnJ0ufPn1kyZIl8uijj4rb7ZaRI0c2xWlRHGECaAKlpaWxDiFmaksAiSCeEkB5ebm0adNGrr/++rD1d9xxh7Ro0UJOnTpV5/7bt28XAPLb3/7WWFdRUSHdunWTgQMHhm07atQoycnJkeLiYmPdiy++KADkrbfeMuFsKF4xAdTj0KFDctddd0lOTo64XC7p3Lmz3HfffeLxeEREZMWKFQJANm/eLFOmTJGsrCxp1aqVsf/ixYvl4osvFpfLJTk5OXL//ffL6dOnwz7jq6++kptvvlnat28vbrdbfvCDH8itt94qRUVFxjZvv/22XHHFFZKRkSEtWrSQCy64QGbNmlVv/JHsd/bsWZkzZ45069ZNXC6XdOjQQX7xi1/I2bNnqx3v5Zdfln79+klKSoq0atVKBg8ebHxJdOrUSQCELcFksGnTJgEgmzZtCjveq6++Kv/v//0/SU5OljZt2sgdd9whhw4dCttm4sSJ0qJFCzl06JDcdNNN0qJFC2nbtq08+OCDUllZWe81WLNmjVx33XXG32HXrl1lwYIFYfteffXV1WKvKxksX75cAMiyZcvC1i9cuFAAyNq1a+uNqy5r166t8Tjvv/++AJCXX365zv1/8YtfiMPhCPtSFxH5zW9+IwDkwIEDIiJSXFwsTqdTfvGLX4Rt5/F4JC0tTe6+++5GnQfFN2cz1zgllO+++w79+/dHUVER7rnnHnTv3h2HDx/GX//6V5SXl8Plchnb3n///cjKysKcOXNQVlYGAJg3bx7mz5+P/Px8TJkyBXv27MGSJUvw0Ucf4b333kNSUhK8Xi9GjBgBj8eDadOmITs7G4cPH8abb76JoqIiZGRk4PPPP8cPf/hDXHrppViwYAHcbjf27t2L9957r874I9lP0zTceOONePfdd3HPPffgoosuwqeffoqnn34aX331FdasWWNsO3/+fMybNw+DBg3CggUL4HK5sH37drzzzjsYPnw4Fi1ahGnTpiEtLQ2PPvooAKB9+/a1xldYWIg777wT/fr1Q0FBAY4ePYr/+Z//wXvvvYePP/4YrVq1Mrb1+/0YMWIEBgwYgCeffBIbNmzA7373O3Tr1g1Tpkyp8zoUFhYiLS0NM2bMQFpaGt555x3MmTMHJSUl+O1vfwsAePTRR1FcXIxDhw7h6aefBgCkpaXVesw777wTf/vb3zBjxgxce+21yMvLw6effor58+fj7rvvxnXXXWdse/r0afj9/jpjBIDU1FSkpqYCAD7++GMAwGWXXRa2Td++faGqKj7++GP86Ec/qvVYH3/8MS644AKkp6eHre/fvz8AYNeuXUbMlZWV1T7H5XKhd+/eRhxkUbHOQPFswoQJoqqqfPTRR9Xe0zRNRKpKAFdeeWXYHeWxY8fE5XLJ8OHDw+q9n332WQEgy5cvFxG9/hWAvPbaa7XG8fTTTwsAOX78eFTxR7Lfyy+/LKqqVqsXDtY/v/feeyIi8vXXX4uqqjJmzJhq9fjBayFSexXQuSUAr9cr7dq1k549e0pFRYWx3ZtvvikAZM6cOca6iRMnCgBZsGBB2DH79Okjffv2rfsiiF6dcq57771XUlNTw0o50VYBff/995KZmSnXXnuteDwe6dOnj3Ts2LHaXXdNJaOalrlz5xr7TJ06VRwOR42fm5WVJePHj68zth49esjQoUOrrf/8888FgCxdulRERF577TUBIFu3bq227bhx4yQ7O7u+y0AJjL2AaqFpGtasWYMbbrih2t0RACiKEvbz5MmT4XA4jJ83bNgAr9eL6dOnQ1XVsO3S09Oxdu1aAEBGRgYA4K233kJ5eXmNsQTvhF9//XVomhbxOUSy32uvvYaLLroI3bt3x4kTJ4xl6NChAIBNmzYBANasWQNN0zBnzpyw8wGqX4tI7NixA8eOHcP999+P5ORkY/3111+P7t27G9cn1H333Rf28+DBg/HNN9/U+1kpKSnG6zNnzuDEiRMYPHgwysvLsXv37qhjD8rOzsbixYuxfv16DB48GLt27cLy5cur3XW/8sorWL9+fb3LhAkTjH0qKirCSpihkpOTUVFRUWdsFRUVcLvdNe4bfD/0z9q2re9zKLGxCqgWx48fR0lJCXr27BnR9l26dAn7+T//+Q8A4MILLwxb73K50LVrV+P9Ll26YMaMGXjqqafwyiuvYPDgwbjxxhvxox/9yEgOt956K/7whz/gJz/5CWbOnIlhw4bh5ptvxi233FLtyzhUJPt9/fXX+PLLL5GVlVXjMY4dOwYA2LdvH1RVxcUXXxzR9ahPbdcHALp374533303bF1ycnK1GFu3bo3Tp0/X+1mff/45Zs+ejXfeeQclJSVh7xUXF0cbepjx48fjT3/6E9auXYt77rkHw4YNq7bNFVdcEfVxU1JS4PV6a3zv7NmzYUmttv09Hk+N+wbfD/2ztm3r+xxKbEwAJmnML8rvfvc7TJo0Ca+//jrefvtt/PSnP0VBQQE++OADdOjQASkpKdi6dSs2bdqEtWvXYt26dVi1ahWGDh2Kt99+O6zkcW5M9e2naRouueQSPPXUUzUeIy8vr8HnZabazrE+RUVFuPrqq5Geno4FCxagW7duSE5Oxr/+9S888sgjUZWoanLy5Ens2LEDAPDFF19A07RqSfn48eMRtQGkpaUZ7Q45OTnw+/04duwY2rVrZ2zj9Xpx8uRJ5Obm1nmsnJwcHD58uNr677//HgCM/XNycsLWn7ttfZ9DiY1VQLXIyspCeno6Pvvsswbt36lTJwDAnj17wtZ7vV7s37/feD/okksuwezZs7F161b885//xOHDh7F06VLjfVVVMWzYMDz11FP44osvsHDhQrzzzjtGFU1t6tuvW7duOHXqFIYNG4b8/PxqS/AOvVu3btA0DV988UWdnxdpdVBt1ye47tzr01CbN2/GyZMnUVhYiJ/97Gf44Q9/iPz8fLRu3bratg2pypo6dSrOnDmDgoICvPvuuzUOJOvXrx9ycnLqXZ588kljn969ewOAkVyCduzYAU3TjPdr07t3b3z11VfVSjzbt28PO37Pnj3hdDqrfY7X68WuXbvq/RxKbEwAtVBVFaNHj8Ybb7xR7ZcDAESkzv3z8/Phcrnw+9//PmzbZcuWobi4GNdffz0AoKSkBJWVlWH7XnLJJVBV1SiWnzp1qtrxg7+YNRXdgyLZ77/+679w+PBhvPjii9W2raioMHo0jR49GqqqYsGCBdXumkPPr0WLFigqKqo1pqDLLrsM7dq1w9KlS8PO4R//+Ae+/PJL4/o0VrDkEBqj1+vFc889V23bFi1aRFUl9Ne//hWrVq3CY489hpkzZ2L8+PGYPXs2vvrqq7DtGtIGMHToUGRmZmLJkiVhx1qyZAlSU1PDrs+JEyewe/fusDakW265BX6/Hy+88IKxzuPxYMWKFRgwYIBRssvIyEB+fj7+9Kc/4cyZM8a2L7/8MkpLSzFu3LiIrwcloNi2Qce3Q4cOSXZ2tqSmpsr06dPl+eefl3nz5kmPHj2MvvzBXkA19RSaO3euAJDhw4fLs88+K9OmTROHwyH9+vUTr9crIiKrV6+WH/zgBzJ9+nR57rnn5Pe//73069dPkpKSZNu2bSIi8rOf/Uz69Okjs2fPlhdffFEWLlwoP/jBD6RDhw5hYwXOFcl+fr9frrvuOlEURcaPHy/PPPOMLFq0SO677z7JzMwMO69f/epXAkAGDRokTz75pDzzzDMyYcIEmTlzprHN/fffL4qiyK9//Wv585//LBs3bhSRmscBBK/dgAEDZNGiRTJr1ixJTU2Vzp07h42VCI4DqO361uXEiRPSunVr6dSpk/zud7+Tp556Svr06SO9evWqFs8TTzwhAOTnP/+5rFy5Uv7+97/XetyjR49K27Zt5ZprrjF6QZ04cULat28vAwcONGXE8+LFiwWA3HLLLfLiiy/KhAkTBIAsXLgwbLvgdTh3jMW4ceOMPv7PP/+8DBo0SJxOp2zZsiVsu507d4rb7Q4bCZycnCzDhw9v9DlQfGMCqMd//vMfmTBhgmRlZYnb7ZauXbvK1KlTqw0EqykBiOjdPrt37y5JSUnSvn17mTJlStiX2zfffCN33XWXdOvWTZKTkyUzM1OuueYa2bBhg7HNxo0b5aabbpLc3FxxuVySm5srt912m3z11Vd1xh7pfl6vVx5//HHp0aOHuN1uad26tfTt21fmz59frUvj8uXLpU+fPsZ2V199taxfv954/8iRI3L99ddLy5YtIxoItmrVKuN4mZmZdQ4EO1ckCUBE5L333pPLL79cUlJSJDc3Vx5++GF56623qsVTWloqt99+u7Rq1aregWA333yztGzZUr799tuw9a+//roAkMcff7zeuCLxwgsvyIUXXigul0u6desmTz/9dFi3W5HaE0BFRYU89NBDkp2dLW63W/r16yfr1q2r8XP++c9/yqBBgyQ5OVmysrJk6tSpUlJSYso5UPxSROqpyyAiIktiGwARkU0xARAR2RQTABGRTTEBEBHZFBMAEZFNMQEQEdmUreYC0jQN3333HVq2bNmgYf9EVDcRwZkzZ5Cbm1vnRIUUH2yVAL777ru4mdyMyMoOHjyIDh06xDqMah58aDzefutD7NjxZY1TYNuNrQaCFRcXB+bIVwGwBEBkPgGgGU+ziyf79u1Dz54XIyenDaY+MAYPzlgc65BiLmHKaEuWLMGll16K9PR0pKenY+DAgfjHP/4R1TGqqn0ULly4NNmCuKxinTnzbtx+ez6eXTwdC//75YieJWF1CZMAOnTogMceeww7d+7Ejh07MHToUNx00034/PPPYx0aEcW57du34x//2I558+/EiBH90bfvhVj4m7qfJW0HCV0FlJmZid/+9re4++67I9q+pKQkUCx1IHinQkRmEgB+FBcXV3s0ZqyICAZf1QtDhvTG/Pl3AQB27dqLwVc+gC+/NO/ZE4koYUoAofx+P/7yl7+grKwMAwcOrHU7j8eDkpKSsIWI7OX111/H118dwkMPjTfW9e59Hm655Wr88pc/iWFksZdQCeDTTz9FWloa3G437rvvPqxevbrOZ9QWFBQgIyPDWNgDiMhefD4fHnnkp5gzZyJatkwNe2/Br+/G6tX/xM6dO2MUXewlVBWQ1+vFgQMHUFxcjL/+9a/4wx/+gC1bttSaBDweT9jTpkpKSgJJgFVARE0jvqqAnl08Hc8+8zfs+vdyJCVV7/X+y1++iA8//BLvbNwZlw3XTS2hEsC58vPz0a1bNzz//PMRbc82AKKmFj8J4MyZM+jWrSOef/5B3HjTlTVuU1xcigsv+BFeemklrrvuumaOMPYSqgroXJqm1flMXCKyr8cen4oLu3fEDTdeUes2GRlpmP2rCXj44anVns1tBwmTAGbNmoWtW7fi22+/xaeffopZs2Zh8+bNuOOOO2IdGhHFmcOHD2PR06/h8cfvrbdq5557boDH48Py5bOaKbr4kTAJ4NixY5gwYQIuvPBCDBs2DB999BHeeustXHvttbEOjYjizK9+NRnXX385BgyovZNIkMuVhIULJ2PevBUoKytrhujiR0K3AUSLbQBETS32bQCffvop+ve/DJ98ugJdu+ZGtI+IYPDgaRgxoh/mzV3RxBHGDyYAIjJR7BPAyJEDcGH3jnjqqalR7ff++5/hulEP4+uvv0F2dnYTRRdfEqYKiIioPhs2bMAHH3yORx/9UdT7DhrUE9deexnmzbu3CSKLT0wARGQJmqbh4Yfvx8xZd6BNm4bNRLrwN5Px0kvrsHv37oj3KSgoQL9+/dCyZUu0a9cOo0ePxp49e8K2GTJkCBRFCVvuu+++BsVoJiYAIrKEV155BSdPlmDatLENPsYFF+Thrruuw8MPRza/GABs2bIFU6dOxQcffID169fD5/Nh+PDh1RqUJ0+ejO+//95YnnjiiQbHaRZbPRCGiKzr0Ucfwq9/fTeSk12NOs6v5kzEBeffge3bt2PAgAH1br9u3bqwnwsLC9GuXTvs3LkTV111lbE+NTU17toWWAIgIks4ePAYrh7Su9HHycpqhYt7dMaBAwcatH9xcTEAfbbiUK+88gratm2Lnj17YtasWSgvL290rI3FEgARWYem6UtjicDn81WbQdjtdtf5KElN0zB9+nRcccUV6Nmzp7H+9ttvR6dOnZCbm4tPPvkEjzzyCPbs2YO//e1vjY+1EZgAiIhqsHr16mozDcydOxfz5s2rdZ+pU6fis88+w7vvvhu2/p577jFeX3LJJcjJycGwYcOwb98+dOvWzdS4o8EEQETWYVYJAMCYMWOwbNmysHV13f0/8MADePPNN7F161Z06NChzmMH2xb27t3LBEBEZArTqoCApKSkiAaziQimTZuG1atXY/PmzejSpUu9++zatQsAkJOT09hIG4UJgIisxZTJDSI/xtSpU7Fy5Uq8/vrraNmyJY4cOQIAyMjIQEpKCvbt24eVK/Xpptu0aYNPPvkEP//5z3HVVVfh0ksvNSHWhmMCICJqhCVLlgDQB3uFWrFiBSZNmgSXy4UNGzZg0aJFKCsrQ15eHsaOHYvZs2fHINpwTABEZB0mtgFEqr7p1PLy8rBly5ZmiiY6TABEZB0mdgO1AyYAIrKOGJQAEhlHAhMR2RRLAERkHSZ2A7UDJgAisg4Rk6qA7JEBmACIyDIU0aBI4xOAXZ4XyDYAIiKbYgmAiKyD3UCjwgRARNahib5QRFgFRERkUywBEJF1aCb1ArJJIYIJgIisQ8waCWyPDMAEQETWIZq+UETYBkBEZFMsARCRdbAbaFSYAIjIOtgNNCpMAERkHewFFBW2ARAR2RRLAERkHewGGhUmACKyDEXToLAKKGJMAERkHSIm9eCxRwZgGwARkU2xBEBE1sGHwkeFCYCIrMOsR0LaowaIVUBERHbFEgARWYdpI4HtUQRgAiAi6zBtLqDGHyIRMAEQkXWY1ghsjwzANgAiIptiCYCIrMO0gWD2wARARNZh1lxANskhTABEZB0a+DyAKLANgIjIplgCICLr4CMho8IEQETWwbmAosIEQETWwZHAUWEbABGRTbEEQEQWouldQRvLHgUAJgAishDTqoDsgVVAREQ2xRIAEVmHZtYDYexRimACICLrYBVQVJgAiMg6OA4gKmwDICKyKZYAiMg6xKQqILYBEBElGDFpHIBNMAEQkXWYNR20PQoAidMGUFBQgH79+qFly5Zo164dRo8ejT179sQ6LCKihJUwCWDLli2YOnUqPvjgA6xfvx4+nw/Dhw9HWVlZrEMjongR7Aba2MUmEqYKaN26dWE/FxYWol27dti5cyeuuuqqGEVFRHHFtG6g9kgCCZMAzlVcXAwAyMzMrHUbj8cDj8dj/FxSUtLkcRERJYqEqQIKpWkapk+fjiuuuAI9e/asdbuCggJkZGQYS15eXjNGSUTNTkyqArJHASAxE8DUqVPx2Wef4S9/+Uud282aNQvFxcXGcvDgwWaKkIhigm0AUUm4KqAHHngAb775JrZu3YoOHTrUua3b7Ybb7W6myIgo5vhM4KgkTAIQEUybNg2rV6/G5s2b0aVLl1iHRESU0BImAUydOhUrV67E66+/jpYtW+LIkSMAgIyMDKSkpMQ4OiKKCyK2uXs3Q8K0ASxZsgTFxcUYMmQIcnJyjGXVqlWxDo2I4oWAbQBRSJgSgDCrE1F9zPoCt8nXTcKUAIiIyFxMAERkHcFeQI1doigCRDJP2dmzZzF16lS0adMGaWlpGDt2LI4ePWryyUePCYCIrMOscQBRVAFFMk/Zz3/+c7zxxht47bXXsGXLFnz33Xe4+eabm+ACRCdh2gCIiOoVg0bc+uYpKy4uxrJly7By5UoMHToUALBixQpcdNFF+OCDD3D55Zc3a7yhWAIgIqqBz+dDSUlJ2BI6t1htzp2nbOfOnfD5fMjPzze26d69Ozp27Iht27Y1TfARYgIgIuswbS4gwerVq8PmEsvIyEBBQUGdH1/TPGVHjhyBy+VCq1atwrZt3769MZ4pVlgFRESWIZpATKoCGjNmDJYtWxa2rr6pZYLzlL377rumxNDUmACIiGqQlJSE9PT0iLevbZ6y7OxseL1eFBUVhZUCjh49iuzsbDNDjhqrgIjIOoJTQTR2ieojBQ888ABWr16Nd955p9o8ZX379kVSUhI2btxorNuzZw8OHDiAgQMHmnLaDcUSABFZRwweCl/fPGUZGRm4++67MWPGDGRmZiI9PR3Tpk3DwIEDY9oDCGACICIriUE30CVLlgAAhgwZErZ+xYoVmDRpEgDg6aefhqqqGDt2LDweD0aMGIHnnnuuWeOsCRMAEVEjRDJPWXJyMhYvXozFixc3Q0SRYwIgIusQk0oANpl8kgmAiKzDZtM5NxYTABFZhlnjAGxSAGA3UCIiu2IJgIisg1VAUWECICLrMKsR2CaPBGMCICLr4CMho8I2ACIim2IJgIisowFz+dgZEwARWYZo+tL4A5lwjATAKiAiIptiCYCIrMOs2UBtggmAiKzDtG6g9sAEQESWwTaA6LANgIjIplgCICLrMG0qCHsUAZgAiMg6tMDSWPb4/mcCICLrEDFnOmi7YBsAEZFNsQRARNbBKqCoMAEQkXUIbPPlbQYmACKyDLMeCWkXbAMgIrIplgCIyDrYBhAVJgAisgwRc6aCsMn3P6uAiIjsiiUAIrIOVgFFhQmAiKzDrNlAbYIJgIisgyWAqLANgIjIplgCICLLENEXigwTABFZhlndQO2CCYCIrINtAFFhGwARkU2xBEBElmHWQ+FtUgBgAiAi62AjcHSYAIjIOjRFXxrLJkmEbQBERDbFEgARWQa7gUaHCYCILENEgYgJVUA2wSogIiKbYgmAiCzDrG6gdmkEZgIgIsvgOIDoMAEQkXWY1QZgk3YEtgEQEdkUSwBEZBmiKRAzBoLZBBMAEVmGgFNBRIMJgIgsQ58LqPElALvkkIRqA9i6dStuuOEG5ObmQlEUrFmzJtYhERElrIRKAGVlZejVqxcWL14c61CIKA4F2wAau9ilCJBQVUCjRo3CqFGjYh0GEcUpTgcdnYRKAEREdeFcQNGxdALweDzweDzGzyUlJTGMhogoviRUG0C0CgoKkJGRYSx5eXmxDomImpCmKaYsdilFWDoBzJo1C8XFxcZy8ODBWIdERE0s2A7QmMUuLF0F5Ha74Xa7Yx0GEVFcSqgEUFpair179xo/79+/H7t27UJmZiY6duwYw8iIKB6wETg6CZUAduzYgWuuucb4ecaMGQCAiRMnorCwMEZREVG8YAKITkK1AQwZMgQiUm3hlz8RAYAmiilLtO0A9c1SMGnSJCiKEraMHDnSvBNvoIRKAERE8SiSWQpGjhyJ77//3lj+/Oc/N2OENUuoKiAiorqYNx10dMeIZJYCt9uN7OzsxgRlOpYAiMgyzOgC2lTdQDdv3ox27drhwgsvxJQpU3Dy5Mmm+aAosARARJYRrMNvLBHA5/NVmz2goV3LR44ciZtvvhldunTBvn378Mtf/hKjRo3Ctm3b4HA4Gh1vQ7EEQERUg9WrV4fNJJCRkYGCgoIGHWv8+PG48cYbcckll2D06NF488038dFHH2Hz5s3mBh0llgCIyDpMeiAMAIwZMwbLli0LW2fWwNKuXbuibdu22Lt3L4YNG2bKMRuCCYCILEODOVVAAJCUlIT09HRTjnWuQ4cO4eTJk8jJyWmS40eKCYCILMOsgWDRtgPXNUtBZmYm5s+fj7FjxyI7Oxv79u3Dww8/jPPOOw8jRoxodKyNwQRARNRIdc1SsGTJEnzyySd46aWXUFRUhNzcXAwfPhy//vWvYz5XGRMAEVmGFliaW3CWgtq89dZbzRhN5JgAiMgyzJsLyB7zCbEbKBGRTbEEQESWISYOBLMDJgAisgxOBx0dJgBqEMWCdaQSdec/ijea6AtFhm0AREQ2xRIAEVlGrAaCJSomACKyDA0KNFOqJ61XxVkTJgAisgzT5vO3SRGAbQBERDbFEgAZourZozS0iNwc9xwNmwxAieKujz2G4pNp4wBMiCURMAEQkWXocwHZo/7eDKwCIiKyKZYAiMgyBPaZxsEMTABEZBmmPRTehFgSAROAjdTbyFtrw271msJaj6XUV6sYB43AUvP7UmMrcM3b1tdgzEbi2BAoELYBRIxtAERENsUSABFZBieDiw4TABFZhnnPA7BHNRITABFZBtsAosM2ACIim2IJwKLq7PFTrbdP+H1A2L5hvXpUKNV6+TjC1imBY1XfroaeRPX2GIqc1NizR6txGwlZr6/z6/GEHSf4pyOs15DRu0epfvzAAQNvh19j9gpqHma1Adjlb4sJgIgsg1VA0WECICLLsGIvoK1btzZov86dO6Njx451bsMEQEQUxyZOnBj1PoqiYPr06fjpT39a53YNSgBDhw7F1Vdfjblz54atP336NMaOHYt33nmnIYclImoUK04HvX///iY7doMSwObNm/Hpp5/i448/xiuvvIIWLVoAALxeL7Zs2WJqgBSZ2qdmqGm9WktDb2gDrsN4rSpO431VdQY+T99WVZ0hr5Oghhwj2MirhDQUKyGNwYriCIko+gZhLawx11/1OrBeRIMEGnhFNKOBV4MGTfMZ22paZbXXwQZeTSpDGob9IQ3CGiA1NPQqNTcM1/T3w4Zh8wni68s73jW4G8aGDRtw5MgRXH755fj2229NDImIiEK9+uqr8Hq9xs+HDh2CplXdbJSXl+OJJ56I+rgNTgA5OTnYsmULLrnkEvTr1w+bN29u6KGIiEwRnA20scu5pbtYu+2221BUVGT8fPHFF4fdeJ85cwazZs2K+rgNSgBKoFrB7XZj5cqV+NnPfoaRI0fiueeea8jhiIhMoZm0xFs1kpzzkINzf26oBrUBnPvhs2fPxkUXXdSg1moiIrOIKLaZx8cMDUoA+/fvR1ZWVti6sWPHonv37tixY4cpgRERUdNqUALo1KlTjet79OiBHj16NCogilxkPX9Cp2kIrFdUIKy3TpK+ZUhvH4fq0l+pTjhUNwDAqbrgVFP114q+zqWkIEnR1yWJG0lwB1674Az0JHKIE2rgsx1wGK9VKEZ1ohrSP6iuaSyCPWf0orr+WkSgKcH1An+g54+mCPyK3qunEn74FL0RzQcPfIpHfy3l8EqFvo14UKmV6681fVu/5jF6Bvk1L8J7BwV6EgV6BikhPYPCeviE9gwKKT2Hnid7BJkjWIVjRW+99RYyMjIAAJqmYePGjfjss88AIKx9IBocCEZEliGw7lxA51ax33vvvWE/K7U+0a92TABEZBn6OADrtQGEdvk0E6eDJiKyKZYAiMgyrDgddJcuXRpUvdNkcwFRbEXT+BtJw68SaPwNNgI7HSlwBhqBkxxpcKtpAIBkJR2pkg4ASNNaAgDSkYyWDv1YqU4HWiQpgdeAMxBPkgo4Ao20DgVwBkJyqqGvxXitAFAVMV4Hfxk1UYzXlQJUakrI66r1/sBGflHgM9YLygOzPJT5BOWVekPxmUofSuQsAKBUPYNyRwkA4Kzof3q0Uvj8pfoxNC8q/XqDsSKVEHEG4gpMJSE+YxoKvUE4+PwBFUbTpKKENQQHBf+e2BjcOFacDrqwsLBB+3Xu3LnebZgAiMgyrDgd9NVXX91kx2YbABGRTbEEkGAirf4Jr/oJrAvOyKkkGdU9iuI0+vw7HSkAgCQ1BS6HPsNrspKBNLQBAKT7M9BG1de3TtH3b5eiol2y/gnt3H60d+t94zNcXrgcWuCTBQ5VAp/hR5Kqr3e7KuFy6dUnSW4/nK7A9kmC4JAERa2agFMqAc0XqPbxqvB59HEGXq8THq++g09TUenX1/s1BVrgOnj9Koq9+nke9SThmEff/thZJ45V6GMXTnta4KRfr9oqCVR7laoncTYQjNdfZlzDSn8F/Frwyur0H4NjAwDjr0C0QDVQYKvg31UtVUGsBmo4MasNwCZ/BUwARGQZVmwDaEqsAiIisimWABJdLdM+1CzwkBdU9QhSFWdV759gzx81BW5FrwJpgdZI1/Th520dLZCVrPf4yU3V9++Y6sd5aXrPmPPbnULb7voUC86uLQFv4GEs3qqHtSguB5QW+ucgoyWQ0aLqdZr+WlJTgKTANqpSVab3eaGU65+F0jKg+Iz+urgMKNancJAyL8R7NuzzAAAuByq/OQYAOLHbja+PZQIA9pamIMXhCJy3AuVsIJ5AyKJqEMVf9To4zYTmgwSmePAbU0GoEAQfclPbwJ1zegQB9qlvaAZWbARuSkwARGQZZs0FZJccwgRgE4qi1vizoqhQ1eCYAP1Pp+I2JnhL1lKRGpj4raXTidZu/a41O1n/NeuWdhYXdzgOAGiTnwLccC0AQNq1Ayr1Bl7l2LGqPvGpLSCtWzf4POr9xTx9Gkp5WeAkVT0OAHA64TymlwCy39iCpA16zHKoHbya3vhd4VdwtlL/lSjX9HP2SCo8gQnwKhUPKgOTyKlqktH/P3gtQ2/kFUUNeZQkNRfzpoO2RzsC2wCIiGyKJQALUqBUe9A7EH7XH1YCMNoDqkoCSaLfAbvFjVSH/s8kzaWidaBqvn2yfvfbKaMYmX31dXJzPhB6d+9spa/PbWXm6dWtdRqkxgJGaVVp4OZ8ZJ5+AwDQ6UwxTnn18y7yJeGMT78WZ4IlAb/buBYeJanqGiH8Ggb/DE5qrT+kPnDtFb0rKMCRvk1NYN3poJsCE0CCqGuO/OhVfVEpUKGqgakgAuscSDLm9XcjCcmBRtIWTiA9Sf8Cy3LrVSFt2pdB7dERAKA1omqnWbVuDbVHLgCgzZcHkFWi9/3//qwTLQLzUQTP2e2vuhYOJFUlS9UJRau6hjpzCtScFqLhrDgXUFNiAiAiyxDY58vbDEwAtuEIuVOtoigOKIGui8HqDYeSBKem/9NIUhxIdgTvihW0dOrdIFu59SdmJWcD6JTb1MGbLxBzcvYBtDqgn0tLZwqSA9VdwXNOUhxwBiZ9c6hVVUAKHFAUx7lHraoCggOsjKB4l3CNwIsXL0bnzp2RnJyMAQMG4MMPP4x1SAkn2AZw7hL8z4EkOOCEA04kKSqSVAVJqoJkhyDVoSHVoSHN7UGa2wNHWxckuz0ku32sTysqwZgdbV3GuaQ6NCQ7BMkOMc45SVGNaxGsAgrW/9e0UGxpopiy2GVoRkL9i121ahVmzJiBuXPn4l//+hd69eqFESNG4Figex8R2ZuYtNhFQiWAp556CpMnT8add96Jiy++GEuXLkVqaiqWL18e69BiI4JRwA29M9WbifXFoejz+CcpgFsVuFWBKzCRm5LmgrRqDWmVIA3AAcGYlTSXcS5uVZAUOM/gOYdeh2jVfu2rRmIHNmzweVC4YCNwYxe7SJgE4PV6sXPnTuTn5xvrVFVFfn4+tm3bVuM+Ho8HJSUlYQvVTlH0em1VVCjBRdEfNq0vgKIIFEXgcOiLkuQAVFVfEkkgZiXJUXUuigTO8ZxzDlwLVVTjGhFZQcL81p44cQJ+vx/t24fXNbdv3x5HjhypcZ+CggJkZGQYS15eXnOESkQxEhwH0NjFLoWAhEkADTFr1iwUFxcby8GDB2MdUsIJbQwTqRpqr2n6Iv7E7ukifq3qXAKNf+eeMyUOAYy/w8YsdpEw3UDbtm0Lh8OBo0ePhq0/evQosrOza9zH7XbD7XY3R3hERAknYUoALpcLffv2xcaNG411mqZh48aNGDhwYAwjsw4RP0T80BQNElg0CPyavlQK4BNFXyod8FU6IOU+oKJCXxJJIGYp9xnn4hNFf8C8wDhnDVJ1LRTNuEYUnzQopix2kTAJAABmzJiBF198ES+99BK+/PJLTJkyBWVlZbjzzjtjHVrcEtHqnJUy+L6Ihqr//KgMLH7R4NMAnwZ4NQVn/SrO+lWUe5JQ7kmCdtoD5cRxKCeON+NZNV4wZu20xziXs34VXk2BV1OMc/aLZlwLDX7jCoVet9rU9z6Zz4zqH5Ho2wC2bt2KG264Abm5uVAUBWvWrDknLsGcOXOQk5ODlJQU5Ofn4+uvvzbtvBsqoRLArbfeiieffBJz5sxB7969sWvXLqxbt65awzAR2ZMZDcANSdllZWXo1asXFi9eXOP7TzzxBH7/+99j6dKl2L59O1q0aIERI0bg7NmzNW7fXBKmDSDogQcewAMPPBDrMBLauXemwadcBf/0iw9+RZ/t06dp8Gr6thV+BWcq9XuG4rN624r3iIbU/xzS98/r2DwnYAIlELP3iGacy5lKFRV+/d4veM4+0eBX9WvhF1+1awXAuJa827evUaNGYdSoUTW+JyJYtGgRZs+ejZtuugkA8Mc//hHt27fHmjVrMH78+OYMNUzCJQAKIRIyiEhDfQU6QfDRhVWv9Trt4KMN9S86TfHBB31+nAp4UVGpzwF9xufAKa/+ed9XJAMAsg+mIe/jb/UPuHKQCSfVPLRAzMcPphnncsqr4IxPf7+iMpD04DWuhQafcY30JBpMBqHJNJIkcM42dup20sTExIFcPp+v2tihhnQs2b9/P44cORI2hikjIwMDBgzAtm3bmACam8PhhJJgoy9rjbaG0cD68wCU8HWBQU36+wJV1X9LVNUPRQ186wWedqUp5aiE/g/fowhKFb2Y6hYnkgM3vqlefZ+U8mKcPhJY+ck3DT6/ZnekCABwtNyBA179WhzzJ6Eo8OVRGigBeZRyVCr6s4c1lBvXSFF9UAOlAIei76QoYqRgvUtpSEKW0Cmez/nbrCUBJGJaEBH4/bFrJDdrKgcBsHr1atxxxx1h6+fOnYt58+ZFdazgOKVoxjA1F1smAHvyo+qvu+pXRKBBAl9AxgPPA82eAOBX/PBp+nqP34EKf6AKyKePhj1ZloKMr08BAFI3vQ/tmvgvBaib3kf51/pd/cmyTONcKvwKPIFxDcFz9it+41poqKyqAhKp4W4/9KuHPYViwbSpHAQYM2YMli1bFrbaat3KE6oRmIiouSQlJSE9PT1saUgCCI5TimYMU3NhCcCmqhou9X7u+utgI3AlfIFqH4/iRoWmz4HvqnSg2BucJ1+/d3AqKfAfaAMAyCstQvqev+vrf5AGqCFVHcH6p2QnkBL4JUpNAVL1+ndJSwNSAq9dLsCZVLVfsIqk0gfFq9+5o+IslNJS/XX5WaA8MA6hwgOcrQyeZNXna4LKw/r2Rd86cfCUHvOhsmQc9wRKNV5BWaV+DSpEr+LyqB74cNa4LqH1/kbJiY2/cSMeR/J26dIF2dnZ2LhxI3r37g0AKCkpwfbt2zFlypSYxsYEQESW0dBunOeKNoeUlpZi7969xs/79+/Hrl27kJmZiY4dO2L69On47//+b5x//vno0qULfvWrXyE3NxejR482IdqGYwKwIIFACf4LVoK/Dg7jjhWKVtUoKX74xRtYHXyIecioXgVGRaFWKfBp+t17ReCh6SU+FUc9qQCAb0pTkP6dfoecnuSHy6G/dioCp6rH4VQr4VT1z0tyFMEZeMKY06nB4dS3UVWBWsO/TK0S0DQ9bn+lispAl9TKSgd8fr0ev1JTURk4j0pNRWXgPL1+B0p8+rN/SyodOB0oyRR5gWKvFjiXSpRqeiNvmVoGAChHMTyilxx8UgG/ppcM/OKtKg0YD3yvKhUEIkZgAz7ft5nEajrnHTt24JprrjF+njFjBgBg4sSJKCwsxMMPP4yysjLcc889KCoqwpVXXol169YhOTm5+YMNwQRARNRIQ4YMOSf5h1MUBQsWLMCCBQuaMar6MQEQkaWwrBU5JgAisgyzqoDskkSYABKEUaVf51bB+v7QAUhVffyDHXEkZCySFtJiVqnqvV3Er0GC0x8oPmN9hSMVpdICAFDkTQEApHqSkeLQ/xklqyrcTr0u3u1wwhn4jCQVUAMf7lSqBk6pgccuAoHHLypV0dc0Tk+k6gw1AQKzNsAf8kvvD8zoqW8j8AV2qBTAE9jBU6nhrDG9RSXKAz2ezioVOOvQ6/59Ug4A8GoV8EugF5DmM9pLNK0SmlZpXFs9Pj8Q+rrGKoH6myjt8uVDsccEQESWIVAgNprOubGYAIjIMkyrArJJMYwJINEZXTtD73o0SOi8QIHtqmawDPnXrWjQAr8xRpWGWtU11KH4jCoQj1KKs4o+MZxT0buvOdVkJIneNdTpd8EVmDjOKU44AjGoUOEIDBxzVEUEh6KGzE+khJ2CWsNdnBY6hYXA6Fopos/bHzwzf2C9P/CMAwDwQ0NlYH4fr+JFZWCCN5/Dg8rA+VXKWVRqgSqewECw0Gof0fxGN1D904MTwwXjqERo10+EbFlj1Y9dvmWakYbYdANNVJwKgojIplgCICJLYQEgckwARGQZ7AYaHSaABFPDbPKBN6RaO4C+fVUtX+j0EBJ4sIn+dIDgfPb6/pWaH4qmd+fU1EpUBl6rigM+xWm81v90Qgm8dsAJJfC+Q3VCDfzzUqBCMZ5LUPVahQpFQuOril+Fo9opaqFP4QptDwg8sF1fX/W0M1E0Y8pmDZVVD3PRqqa7FvFDCz4I55zXxvth3T2rJtFDyNTQwQirut3WMCWEEXDtXy92+eJpKgJOuxENtgEQEdkUSwBEZBmxmgwuUTEBEJFlmPlISDtgAkhAof84w9oDQuuWwx4WH9xPNbZTgn3oA4+ID91dURRIoA5eNB+UwD8TPxQoSlVdvv6nw2g7CK3r19sGqqIztg+tdVRC6v8bMHozrK5XQs8zWE8fsk7EqN8XaCHbSNi0zlX7BK9PZUgdv7/W6Z6rxcN6/5hgCSA6bAMgIrIplgCIyDrMeiSkTUoRTABEZBmxeiRkomICSHC1ThN97m2QoqC+9oCq98LbBRQlOGYgZCYfYxc1pF4/vM5fqa+OX6m5BlKpaS7oYGy13d7V8GD2sLECYfX7+rv6/8O/MkLr+6t/nhZ2Xav3N4+83r8qAqLYYQIgIstgI3B0mACIyDLErDYAm2ACsIhau4YaG5zbRbSG6qCQbUOrhaoesOGHSPi2epfRUA4joJqrciLreKbUsJ1EXLtbQ3VQ2LeCv473aq/GqbfK55zta8LvpqbFNoDosBsoEZFNsQRARJbBKqDoMAEQkWXU8uw1qgUTgAVF1R4AAEpNXSiD1LDtq3UZDfswBaH161XvRVjvH9JmUN9NXK3dQaup5euglv1rnko4umNUPyY1F31qj8ZfcbuUItgGQERkUywBEJFl8KHw0WECICLLMGs6aLtgArC4mn4Z6p02Imzj8Prv6luG1CLWehwtoumeza53jfzRgPU0G0YRGL98KJEwARCRZfCh8NFhAiAiyxDOBRQVJgAisgwJ/EeRYQKwoXN/Peqsna+v/ruGMQSRfGZcaWDjQ1yfE1EEmACIyDLYBhAdJgAisgzT5gKySQZgAqB6/603qooowVn77KxHg0Az4W/NLu0InAqCiMimWAIgIsvgdNDRYQIgIsvgdNDRYQKgejXkhqr+iR+aH28Mrc+s6aDtgm0AREQ2xRIAEVkGxwFEhwmAiCzDrG6gdsEEQE2Cv4JE8Y8JgIgsw6xuoHZpR2YCICLL0LuB2uTb2wRMAERkGQL73L2bgd1AiYhsiiUAIrIM8yaDswcmACKyDE0EGueDjhgTABFZBh8JGR22ARAR2VTCJICFCxdi0KBBSE1NRatWrWIdDhHFIc2kxS5liIRJAF6vF+PGjcOUKVNiHQoRxSkJNAI3drGLhGkDmD9/PgCgsLAwtoEQUdzidNDRSZgSABERmSthSgAN4fF44PF4jJ9LSkpiGA0RNTU+FD46MS0BzJw5E4qi1Lns3r27wccvKChARkaGseTl5ZkYPRHFGzPq/+3UBhDTBPDggw/iyy+/rHPp2rVrg48/a9YsFBcXG8vBgwdNjJ6ISDdv3rxqN6/du3ePdVj1imkVUFZWFrKysprs+G63G263u8mOT0TxRQL9gBp/nOj16NEDGzZsMH52OuO/hj3+Iww4cOAATp06hQMHDsDv92PXrl0AgPPOOw9paWmxDY6I4oLEsArH6XQiOzs7Jp/dUAmTAObMmYOXXnrJ+LlPnz4AgE2bNmHIkCExioqI4ol5dfjRH+Prr79Gbm4ukpOTMXDgQBQUFKBjx44mxNJ0EqYbaGFhodHHN3Thlz8RNQWfz4eSkpKwJbRXYagBAwagsLAQ69atw5IlS7B//34MHjwYZ86caeaoo5MwCYCIqD6aSf8JgNWrV4f1IszIyEBBQUGNnztq1CiMGzcOl156KUaMGIH/+7//Q1FREV599dXmvQBRSpgqIDP17NkTDocj1mEQWY7f78e//70zZp8vigZRGt8IDAjGjBmDZcuWha2NtFNJq1atcMEFF2Dv3r0mxNJ0WAIgIsswaxyAAEhKSkJ6enrYEmkCKC0txb59+5CTk9O0J9xITABERI300EMPYcuWLfj222/x/vvvY8yYMXA4HLjttttiHVqdbFkFRETWpHcDNaMKKDqHDh3CbbfdhpMnTyIrKwtXXnklPvjggyYd52QGJgAisoxgJY4ZR4rGX/7yFxM+s/kxARCRZWiKBs2ERmC7zAbENgAiIptiCYCILCPYj7/x7FEGYAIgIsswKwHY4+ufVUBERLbFEgARWYZZ00HbBRMAEVmGwA8NflOOZAdMAERkGbEaB5Co2AZARGRTLAEQkWVo4ECwaDABEJFl6J1A2QYQKSYAIrIMs9oA7PH1zzYAIiLbYgmAiCxD4IcmrAKKFBMAEVkGB4JFhwmAiCxD4IewEThibAMgIrIplgCIyDI4G2h0mACIyDI4FUR0WAVERGRTLAEQkWWIaBBTuoHaAxMAEVmGmNYGYI8qICYAIrIMdgONDtsAiIhsiiUAIrIMEYEIRwJHigmAiCxDgwaF4wAixgRARJYh4jepF5A9UgDbAIiIbIolACKyDI4Ejg4TABFZhmmNwPb4/mcCICLrMGscgF0GgrENgIjIplgCICLrEI3jAKLABEBEliGmJQBWARERkYWxBEBElqFBAD4UPmJMAERkGWZVAdmjAogJgIgsRJ8KwoSabbFHCmAbABGRTbEEQESWwakgosMEQESWIeDzAKLBBEBEliFiTgnAHvf/bAMgIrItlgCIyELYBhANJgAisgy9/p9tAJFiFRARkU2xBEBEliFi1lQQrAIiIkowGgAl1kEkDCYAIrIMvQ3AhATAqSCIiMjKWAIgIssQk6qA7HH/zwRARBZiWhWQTVIAEwARWQjHAESDbQBERDaVEAng22+/xd13340uXbogJSUF3bp1w9y5c+H1emMdGhHFkeATwRq7sAoojuzevRuapuH555/Heeedh88++wyTJ09GWVkZnnzyyViHR0Rxg1VA0UiIBDBy5EiMHDnS+Llr167Ys2cPlixZwgRARFVMexaAPUoACVEFVJPi4mJkZmbGOgwiooSVECWAc+3duxfPPPNMvXf/Ho8HHo/H+LmkpKSpQyOiGJKQ/1P9YloCmDlzJhRFqXPZvXt32D6HDx/GyJEjMW7cOEyePLnO4xcUFCAjI8NY8vLymvJ0iCjmNJOW6C1evBidO3dGcnIyBgwYgA8//LBxp9IMFJHYTXpx/PhxnDx5ss5tunbtCpfLBQD47rvvMGTIEFx++eUoLCyEqtadv2oqAeTl5aFXr75wOByNPwEiCuP3+/Hvf+9EcXEx0tPTm/WzFUUBkBT4s3FEfHj11VUYN25cRNuvWrUKEyZMwNKlSzFgwAAsWrQIr732Gvbs2YN27do1Op6mEtMqoKysLGRlZUW07eHDh3HNNdegb9++WLFiRb1f/gDgdrvhdrsbGyYRJQyJSQ3QU089hcmTJ+POO+8EACxduhRr167F8uXLMXPmzOYPKEIJ0QZw+PBhDBkyBJ06dcKTTz6J48ePG+9lZ2fHMDIiii9i0ve/wOfzVWs3rOmm0uv1YufOnZg1a5axTlVV5OfnY9u2baZE01QSohfQ+vXrsXfvXmzcuBEdOnRATk6OsRARVTHj618/xoYNG8LaEDMyMlBQUFBt6xMnTsDv96N9+/Zh69u3b48jR46YEE/TSYgEMGnSJIhIjQsREQC88MIL0BtwG/u9oE8ot2TJEhQXF4ctoXf5VpAQCYCIqD7B+vfGJQABINi162O43W6kp6eHLTW1KbZt2xYOhwNHjx4NW3/06NG4r6JmAiAiS3A6nXjjjTfQuFKAfvffq1eviPdwuVzo27cvNm7cWHUUTcPGjRsxcODABsbRPBKiEZiIKBLXX3899OcBaACi7eqt3/0fPHgw6s+dMWMGJk6ciMsuuwz9+/fHokWLUFZWFlIqiU9MAERkGYqiYMeOj3DZZZdB/0KPdEyAAPADUNChQ4eoP/fWW2/F8ePHMWfOHBw5cgS9e/fGunXrqjUMx5uYDgRrbiUlJcjIyOBAMKImEsuBYKEUJVi7HenvuT4CuKioCBkZGU0UVfxhGwARWc7+/d8gWKVTPwGg4ZlnnrHVlz/ABEBEFtS5c2dUtQXUlwT09++9996mDSoOMQEQkSWdOnUS9ZcC9Lv///3f/0VSUlLzBBZHmACIyJJat24N/SuurlKAvn7MmDHNFFV8YQIgIss6e7Y88KqmBKDf/b/33numzCCaiJgAiMiy3G43/vznP6PmUoA+6GvQoEHNH1icYAIgIku79dZbA69CE4DeNvDVV3tiEFH8YAIgIktTFAVbtmxBeClAv/s///zzYxdYHGACICLLu+qqqxDeLVRw7NjRuneyASYAIrKFL774HFVTPqgRP43Qymw1F1Bw1gu/3x/jSIisKfi7FY8zzFx00UXQSwGC8vLSWIcTF2yVAM6cOQMA+OyzXbENhMjizpw5E5fTKohosQ4hrthqMjhN0/Ddd9+hZcuWcdPvt6SkBHl5eTh48GBMJ8+KR7w2dYvH6yMiOHPmDHJzc6GqrGGOd7YqAaiq2qCpXptD8IlDVB2vTd3i7frE450/1YwpmojIppgAiIhsigkgxtxuN+bOnVvjw6btjtembrw+1Fi2agQmIqIqLAEQEdkUEwARkU0xARAR2RQTQBxZuHAhBg0ahNTUVLRq1SrW4cTc4sWL0blzZyQnJ2PAgAH48MMPYx1SXNi6dStuuOEG5ObmQlEUrFmzJtYhUYJiAogjXq8X48aNw5QpU2IdSsytWrUKM2bMwNy5c/Gvf/0LvXr1wogRI3Ds2LFYhxZzZWVl6NWrFxYvXhzrUCjBsRdQHCosLMT06dNRVFQU61BiZsCAAejXrx+effZZAPo0Hnl5eZg2bRpmzpwZ4+jih6IoWL16NUaPHh3rUCgBsQRAccfr9WLnzp3Iz8831qmqivz8fGzbti2GkRFZCxMAxZ0TJ07A7/ejffv2Yevbt2+PI0eOxCgqIuthAmhiM2fOhKIodS67d++OdZhEZEO2mg00Fh588EFMmjSpzm26du3aPMEkiLZt28LhcODo0fBH9h09ehTZ2dkxiorIepgAmlhWVhYfPRcll8uFvn37YuPGjUbjpqZp2LhxIx544IHYBkdkIUwAceTAgQM4deoUDhw4AL/fj127dgEAzjvvPKSlpcU2uGY2Y8YMTJw4EZdddhn69++PRYsWoaysDHfeeWesQ4u50tJS7N271/h5//792LVrFzIzM9GxY8cYRkYJRyhuTJw4UaA/tTps2bRpU6xDi4lnnnlGOnbsKC6XS/r37y8ffPBBrEOKC5s2barx38nEiRNjHRolGI4DICKyKfYCIiKyKSYAIiKbYgIgIrIpJgAiIptiAiAisikmACIim2ICICKyKSYAIiKbYgIgIrIpJgAiIptiAiAisikmAIo7f/zjH9GmTRt4PJ6w9aNHj8aPf/zjGEVFZD1MABR3xo0bB7/fj7///e/GumPHjmHt2rW46667YhgZkbUwAVDcSUlJwe23344VK1YY6/70pz+hY8eOGDJkSOwCI7IYJgCKS5MnT8bbb7+Nw4cPAwAKCwsxadIkKIoS48iIrIPPA6C41bdvX9xyyy0YPnw4+vfvj2+//RZ5eXmxDovIMvhISIpbP/nJT7Bo0SIcPnwY+fn5/PInMhlLABS3iouLkZubi8rKSvzxj3/ErbfeGuuQiCyFbQAUtzIyMjB27FikpaVh9OjRsQ6HyHKYACiuHT58GHfccQfcbnesQyGyHFYBUVw6ffo0Nm/ejFtuuQVffPEFLrzwwliHRGQ5bASmuNSnTx+cPn0ajz/+OL/8iZoISwBERDbFNgAiIptiAiAisikmACIim2ICICKyKSYAIiKbYgIgIrIpJgAiIptiAiAisikmACIim/r/74dprd7KG5UAAAAASUVORK5CYII=",
+ "text/plain": [
+ "