-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathmotion_metrics.m
113 lines (100 loc) · 3.56 KB
/
motion_metrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
function [cY,mY,ng] = motion_metrics(Y,bnd,batch_size,var_name)
% computes several metrics for the quantitative assessment of the registration
% INPUTS
% Y: registered time series in a loaded or memory mapped array
% bnd: number of pixels to be exluded to avoid NaN effects
% [x_beg,x_end,y_be,y_end,z_beg,z_end]
% batch_size: size of batch to be read for memory mapped files
% var_name: in case of memory mapped files use this variable
% OUTPUTS
% cY: correlation coefficient of each frame with the mean
% mY: mean image
% ng: norm of gradient of mean image
if nargin == 1 || isempty(bnd); bnd = zeros(6,1); end
if nargin < 3|| isempty(batch_size); batch_size = 1000; end
memmap = isobject(Y);
if memmap
if ~exist('var_name','var')
try sizY = size(Y,'Y'); var_name = 'Y'; catch; sizY = size(Y,'M'); var_name = 'M'; end
end
else
sizY = size(Y);
end
dimsY = length(sizY);
nd = dimsY - 1;
d = prod(sizY(1:end-1));
T = sizY(end);
if isscalar(bnd); bnd = ones(2*(dimsY-1),1)*bnd; end
if dimsY == 3; sizY(3) = 1; bnd(5:6) = 0; end
if memmap
cY = zeros(T,1);
mY = zeros(sizY(1:end-1));
for t = 1:batch_size:T
y_temp = single(load_data(Y,t,batch_size));
sy = size(y_temp,ndims(y_temp));
delta = nanmean(y_temp,ndims(y_temp));
mY = mY*(t-1)/(t+sy-1) + sy*delta/(t+sy-1);
end
m_temp = mY(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),bnd(5)+1:sizY(3)-bnd(6));
mYr = m_temp(:);
for t = 1:batch_size:T
y_temp = single(load_data(Y,t,batch_size));
sy = size(y_temp,ndims(y_temp));
if nd == 2; y_temp = y_temp(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),:); end
if nd == 3; y_temp = y_temp(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),bnd(5)+1:sizY(3)-bnd(6),:); end
Yr = reshape(y_temp,[],sy);
if any(any(isnan(Yr))) || any(isnan(mYr));
cY(t:min(t+batch_size-1,T)) = corr(Yr,mYr,'rows','p');
else
cY(t:min(t+batch_size-1,T)) = corr(Yr,mYr);
end
end
else
Y = single(Y);
nd = ndims(Y)-1;
mY = nanmean(Y,nd+1);
if nd == 2
Yr = Y(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),:);
mYr = mY(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4));
else
Yr = Y(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),bnd(5)+1:sizY(3)-bnd(6),:);
mYr = mY(bnd(1)+1:sizY(1)-bnd(2),bnd(3)+1:sizY(2)-bnd(4),bnd(5)+1:sizY(3)-bnd(6));
end
Yr = reshape(Yr,[],T);
mYr = mYr(:);
if any(any(isnan(Yr))) || any(isnan(mYr));
cY = corr(Yr,mYr,'rows','p');
else
cY = corr(Yr,mYr);
end
end
if ismatrix(mY);
[gx,gy] = gradient(mY);
ng = norm(sqrt(gx.^2+gy.^2),'fro');
elseif ndims(Y)-1 == 3;
[gx,gy,gz] = gradient(mY);
ng = sqrt(sum(gx(:).^2+gy(:).^2+gz(:).^2));
end
function y_temp = load_data(X,t,batch_size)
lY = min(T-t+1,batch_size);
if ~memmap
y_temp = reshape(X(d*(t-1) + (1:d)),[sizY(1:end-1),lY]);
else
if strcmp(var_name,'Y')
if dimsY == 3
y_temp = double(X.Y(:,:,t:t+lY-1));
else
y_temp = double(X.Y(:,:,:,t+lY-1));
end
elseif strcmp(var_name,'M')
if dimsY == 3
y_temp = double(X.M(:,:,t+lY-1));
else
y_temp = double(X.M(:,:,:,t+lY-1));
end
else
error('unknown variable name')
end
end
end
end