-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathabc.py
207 lines (174 loc) · 8.13 KB
/
abc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang
from __future__ import annotations
import warnings
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules import (FusedRMSNormSwishGate, RMSNorm, RotaryEmbedding,
ShortConvolution)
from fla.modules.activations import swiglu, swish
from fla.ops.abc.chunk import chunk_abc
if TYPE_CHECKING:
from fla.models.utils import Cache
class ABCAttention(nn.Module):
def __init__(
self,
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
num_slots: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_low_rank_dim: int = 16,
gate_logit_normalizer: int = 16,
use_input_gate: bool = False,
use_output_gate: bool = True,
use_norm: bool = True,
clamp_min: Optional[float] = -32,
clamp_max: Optional[float] = 32,
layer_idx: Optional[int] = None,
**kwargs
) -> ABCAttention:
super().__init__()
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.key_dim = int(self.hidden_size * self.expand_k)
self.value_dim = int(self.hidden_size * self.expand_v)
self.head_k_dim = self.key_dim // self.num_heads
self.head_v_dim = self.value_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.gate_low_rank_dim = gate_low_rank_dim
self.gate_logit_normalizer = gate_logit_normalizer
self.use_input_gate = use_input_gate
self.use_output_gate = use_output_gate
self.use_norm = use_norm
if num_slots is None:
num_slots = self.head_k_dim
self.num_slots = num_slots
self.norm_eps = norm_eps
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.layer_idx = layer_idx
if layer_idx is None:
warnings.warn(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
if use_output_gate:
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if self.use_norm:
if self.use_output_gate:
self.g_norm = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
else:
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
if self.use_rope:
self.rotary = RotaryEmbedding(self.head_k_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache)
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache)
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
if self.use_input_gate:
q, k, v = map(lambda x: swish(x), (q, k, v))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
q, k, v = map(lambda x: rearrange(x, '... (h d) -> ... h d', h=self.num_heads), (q, k, v))
if self.use_rope:
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset)
s = rearrange(self.s_proj(hidden_states), '... (h m) -> ... h m', h=self.num_heads)
s = s.clamp_(self.clamp_min, self.clamp_max)
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
o, recurrent_state = chunk_abc(
q=q,
k=k,
v=v,
s=s,
initial_state=recurrent_state,
output_final_state=use_cache,
head_first=False
)
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[2]
)
if self.use_norm and not self.use_output_gate:
o = self.g_norm(o)
elif self.use_output_gate:
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
o = rearrange(o, '... h d -> ... (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def state_size(self, seq_len: int = 2048):
return self.num_heads * self.key_dim * self.head_v_dim