-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflowlite_types.h
828 lines (715 loc) · 34.1 KB
/
tensorflowlite_types.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// This file defines common C types and APIs for implementing operations,
// delegates and other constructs in TensorFlow Lite. The actual operations and
// delegates can be defined using C++, but the interface between the interpreter
// and the operations are C.
//
// Summary of abstractions
// TF_LITE_ENSURE - Self-sufficient error checking
// TfLiteStatus - Status reporting
// TfLiteIntArray - stores tensor shapes (dims),
// TfLiteContext - allows an op to access the tensors
// TfLiteTensor - tensor (a multidimensional array)
// TfLiteNode - a single node or operation
// TfLiteRegistration - the implementation of a conceptual operation.
// TfLiteDelegate - allows delegation of nodes to alternative backends.
//
// Some abstractions in this file are created and managed by Interpreter.
//
// NOTE: The order of values in these structs are "semi-ABI stable". New values
// should be added only to the end of structs and never reordered.
#ifndef ION_BB_DNN_TENSORFLOWLITE_TYPES_H
#define ION_BB_DNN_TENSORFLOWLITE_TYPES_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
typedef enum TfLiteStatus {
kTfLiteOk = 0,
kTfLiteError = 1,
kTfLiteDelegateError = 2
} TfLiteStatus;
// The list of external context types known to TF Lite. This list exists solely
// to avoid conflicts and to ensure ops can share the external contexts they
// need. Access to the external contexts is controlled by one of the
// corresponding support files.
typedef enum TfLiteExternalContextType {
kTfLiteEigenContext = 0, // include eigen_support.h to use.
kTfLiteGemmLowpContext = 1, // include gemm_support.h to use.
kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support.
kTfLiteCpuBackendContext = 3, // include cpu_backend_context.h to use.
kTfLiteMaxExternalContexts = 4
} TfLiteExternalContextType;
// Forward declare so dependent structs and methods can reference these types
// prior to the struct definitions.
struct TfLiteContext;
struct TfLiteDelegate;
struct TfLiteRegistration;
// An external context is a collection of information unrelated to the TF Lite
// framework, but useful to a subset of the ops. TF Lite knows very little
// about about the actual contexts, but it keeps a list of them, and is able to
// refresh them if configurations like the number of recommended threads
// change.
typedef struct TfLiteExternalContext {
TfLiteExternalContextType type;
TfLiteStatus (*Refresh)(struct TfLiteContext* context);
} TfLiteExternalContext;
#define kTfLiteOptionalTensor (-1)
// Fixed size list of integers. Used for dimensions and inputs/outputs tensor
// indices
typedef struct TfLiteIntArray {
int size;
// gcc 6.1+ have a bug where flexible members aren't properly handled
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
#if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
__GNUC_MINOR__ >= 1) || \
defined(HEXAGON)
int data[0];
#else
int data[];
#endif
} TfLiteIntArray;
// Given the size (number of elements) in a TfLiteIntArray, calculate its size
// in bytes.
int TfLiteIntArrayGetSizeInBytes(int size);
#ifndef TF_LITE_STATIC_MEMORY
// Create a array of a given `size` (uninitialized entries).
// This returns a pointer, that you must free using TfLiteIntArrayFree().
TfLiteIntArray* TfLiteIntArrayCreate(int size);
#endif
// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise.
int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b);
// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise.
int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
const int b_data[]);
#ifndef TF_LITE_STATIC_MEMORY
// Create a copy of an array passed as `src`.
// You are expected to free memory with TfLiteIntArrayFree
TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src);
// Free memory of array `a`.
void TfLiteIntArrayFree(TfLiteIntArray* a);
#endif // TF_LITE_STATIC_MEMORY
// Fixed size list of floats. Used for per-channel quantization.
typedef struct TfLiteFloatArray {
int size;
// gcc 6.1+ have a bug where flexible members aren't properly handled
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
// This also applies to the toolchain used for Qualcomm Hexagon DSPs.
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
__GNUC_MINOR__ >= 1
float data[0];
#else
float data[];
#endif
} TfLiteFloatArray;
// Given the size (number of elements) in a TfLiteFloatArray, calculate its size
// in bytes.
int TfLiteFloatArrayGetSizeInBytes(int size);
#ifndef TF_LITE_STATIC_MEMORY
// Create a array of a given `size` (uninitialized entries).
// This returns a pointer, that you must free using TfLiteFloatArrayFree().
TfLiteFloatArray* TfLiteFloatArrayCreate(int size);
// Free memory of array `a`.
void TfLiteFloatArrayFree(TfLiteFloatArray* a);
#endif // TF_LITE_STATIC_MEMORY
// Since we must not depend on any libraries, define a minimal subset of
// error macros while avoiding names that have pre-conceived meanings like
// assert and check.
// Try to make all reporting calls through TF_LITE_KERNEL_LOG rather than
// calling the context->ReportError function directly, so that message strings
// can be stripped out if the binary size needs to be severely optimized.
#ifndef TF_LITE_STRIP_ERROR_STRINGS
#define TF_LITE_KERNEL_LOG(context, ...) \
do { \
(context)->ReportError((context), __VA_ARGS__); \
} while (false)
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) \
do { \
if ((context) != nullptr) { \
(context)->ReportError((context), __VA_ARGS__); \
} \
} while (false)
#else // TF_LITE_STRIP_ERROR_STRINGS
#define TF_LITE_KERNEL_LOG(context, ...)
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...)
#endif // TF_LITE_STRIP_ERROR_STRINGS
// Check whether value is true, and if not return kTfLiteError from
// the current function (and report the error string msg).
#define TF_LITE_ENSURE_MSG(context, value, msg) \
do { \
if (!(value)) { \
TF_LITE_KERNEL_LOG((context), __FILE__ " " msg); \
return kTfLiteError; \
} \
} while (0)
// Check whether the value `a` is true, and if not return kTfLiteError from
// the current function, while also reporting the location of the error.
#define TF_LITE_ENSURE(context, a) \
do { \
if (!(a)) { \
TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \
__LINE__, #a); \
return kTfLiteError; \
} \
} while (0)
#define TF_LITE_ENSURE_STATUS(a) \
do { \
const TfLiteStatus s = (a); \
if (s != kTfLiteOk) { \
return s; \
} \
} while (0)
// Check whether the value `a == b` is true, and if not return kTfLiteError from
// the current function, while also reporting the location of the error.
// `a` and `b` may be evaluated more than once, so no side effects or
// extremely expensive computations should be done.
// NOTE: Use TF_LITE_ENSURE_TYPES_EQ if comparing TfLiteTypes.
#define TF_LITE_ENSURE_EQ(context, a, b) \
do { \
if ((a) != (b)) { \
TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%d != %d)", __FILE__, \
__LINE__, #a, #b, (a), (b)); \
return kTfLiteError; \
} \
} while (0)
#define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \
do { \
if ((a) != (b)) { \
TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%s != %s)", __FILE__, \
__LINE__, #a, #b, TfLiteTypeGetName(a), \
TfLiteTypeGetName(b)); \
return kTfLiteError; \
} \
} while (0)
#define TF_LITE_ENSURE_OK(context, status) \
do { \
const TfLiteStatus s = (status); \
if ((s) != kTfLiteOk) { \
return s; \
} \
} while (0)
// Single-precision complex data type compatible with the C99 definition.
typedef struct TfLiteComplex64 {
float re, im; // real and imaginary parts, respectively.
} TfLiteComplex64;
// Half precision data type compatible with the C99 definition.
typedef struct TfLiteFloat16 {
uint16_t data;
} TfLiteFloat16;
// Types supported by tensor
typedef enum {
kTfLiteNoType = 0,
kTfLiteFloat32 = 1,
kTfLiteInt32 = 2,
kTfLiteUInt8 = 3,
kTfLiteInt64 = 4,
kTfLiteString = 5,
kTfLiteBool = 6,
kTfLiteInt16 = 7,
kTfLiteComplex64 = 8,
kTfLiteInt8 = 9,
kTfLiteFloat16 = 10,
kTfLiteFloat64 = 11,
} TfLiteType;
// Return the name of a given type, for error reporting purposes.
const char* TfLiteTypeGetName(TfLiteType type);
// SupportedQuantizationTypes.
typedef enum TfLiteQuantizationType {
// No quantization.
kTfLiteNoQuantization = 0,
// Affine quantization (with support for per-channel quantization).
// Corresponds to TfLiteAffineQuantization.
kTfLiteAffineQuantization = 1,
} TfLiteQuantizationType;
// Structure specifying the quantization used by the tensor, if-any.
typedef struct TfLiteQuantization {
// The type of quantization held by params.
TfLiteQuantizationType type;
// Holds a reference to one of the quantization param structures specified
// below.
void* params;
} TfLiteQuantization;
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
// If per-layer quantization is specified this field will still be populated in
// addition to TfLiteAffineQuantization.
// Parameters for asymmetric quantization. Quantized values can be converted
// back to float using:
// real_value = scale * (quantized_value - zero_point)
typedef struct TfLiteQuantizationParams {
float scale;
int32_t zero_point;
} TfLiteQuantizationParams;
// Parameters for asymmetric quantization across a dimension (i.e per output
// channel quantization).
// quantized_dimension specifies which dimension the scales and zero_points
// correspond to.
// For a particular value in quantized_dimension, quantized values can be
// converted back to float using:
// real_value = scale * (quantized_value - zero_point)
typedef struct TfLiteAffineQuantization {
TfLiteFloatArray* scale;
TfLiteIntArray* zero_point;
int32_t quantized_dimension;
} TfLiteAffineQuantization;
/* A union of pointers that points to memory for a given tensor. */
typedef union TfLitePtrUnion {
/* Do not access these members directly, if possible, use
* GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other
* members are deprecated. */
int32_t* i32;
int64_t* i64;
float* f;
TfLiteFloat16* f16;
char* raw;
const char* raw_const;
uint8_t* uint8;
bool* b;
int16_t* i16;
TfLiteComplex64* c64;
int8_t* int8;
/* Only use this member. */
void* data;
} TfLitePtrUnion;
// Memory allocation strategies.
// * kTfLiteMmapRo: Read-only memory-mapped data, or data externally allocated.
// * kTfLiteArenaRw: Arena allocated with no guarantees about persistence,
// and available during eval.
// * kTfLiteArenaRwPersistent: Arena allocated but persistent across eval, and
// only available during eval.
// * kTfLiteDynamic: Allocated during eval, or for string tensors.
// * kTfLitePersistentRo: Allocated and populated during prepare. This is
// useful for tensors that can be computed during prepare and treated
// as constant inputs for downstream ops (also in prepare).
typedef enum TfLiteAllocationType {
kTfLiteMemNone = 0,
kTfLiteMmapRo,
kTfLiteArenaRw,
kTfLiteArenaRwPersistent,
kTfLiteDynamic,
kTfLitePersistentRo,
} TfLiteAllocationType;
// The delegates should use zero or positive integers to represent handles.
// -1 is reserved from unallocated status.
typedef int TfLiteBufferHandle;
enum {
kTfLiteNullBufferHandle = -1,
};
// Storage format of each dimension in a sparse tensor.
typedef enum TfLiteDimensionType {
kTfLiteDimDense = 0,
kTfLiteDimSparseCSR,
} TfLiteDimensionType;
// Metadata to encode each dimension in a sparse tensor.
typedef struct TfLiteDimensionMetadata {
TfLiteDimensionType format;
int dense_size;
TfLiteIntArray* array_segments;
TfLiteIntArray* array_indices;
} TfLiteDimensionMetadata;
// Parameters used to encode a sparse tensor. For detailed explanation of each
// field please refer to lite/schema/schema.fbs.
typedef struct TfLiteSparsity {
TfLiteIntArray* traversal_order;
TfLiteIntArray* block_map;
TfLiteDimensionMetadata* dim_metadata;
int dim_metadata_size;
} TfLiteSparsity;
// An tensor in the interpreter system which is a wrapper around a buffer of
// data including a dimensionality (or NULL if not currently defined).
#ifndef TF_LITE_STATIC_MEMORY
typedef struct TfLiteTensor {
// The data type specification for data stored in `data`. This affects
// what member of `data` union should be used.
TfLiteType type;
// A union of data pointers. The appropriate type should be used for a typed
// tensor based on `type`.
TfLitePtrUnion data;
// A pointer to a structure representing the dimensionality interpretation
// that the buffer should have. NOTE: the product of elements of `dims`
// and the element datatype size should be equal to `bytes` below.
TfLiteIntArray* dims;
// Quantization information.
TfLiteQuantizationParams params;
// How memory is mapped
// kTfLiteMmapRo: Memory mapped read only.
// i.e. weights
// kTfLiteArenaRw: Arena allocated read write memory
// (i.e. temporaries, outputs).
TfLiteAllocationType allocation_type;
// The number of bytes required to store the data of this Tensor. I.e.
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
// type is kTfLiteFloat32 and dims = {3, 2} then
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
size_t bytes;
// An opaque pointer to a tflite::MMapAllocation
const void* allocation;
// Null-terminated name of this tensor.
const char* name;
// The delegate which knows how to handle `buffer_handle`.
// WARNING: This is an experimental interface that is subject to change.
struct TfLiteDelegate* delegate;
// An integer buffer handle that can be handled by `delegate`.
// The value is valid only when delegate is not null.
// WARNING: This is an experimental interface that is subject to change.
TfLiteBufferHandle buffer_handle;
// If the delegate uses its own buffer (e.g. GPU memory), the delegate is
// responsible to set data_is_stale to true.
// `delegate->CopyFromBufferHandle` can be called to copy the data from
// delegate buffer.
// WARNING: This is an // experimental interface that is subject to change.
bool data_is_stale;
// True if the tensor is a variable.
bool is_variable;
// Quantization information. Replaces params field above.
TfLiteQuantization quantization;
// Parameters used to encode a sparse tensor.
// This is optional. The field is NULL if a tensor is dense.
// WARNING: This is an experimental interface that is subject to change.
TfLiteSparsity* sparsity;
// Optional. Encodes shapes with unknown dimensions with -1. This field is
// only populated when unknown dimensions exist in a read-write tensor (i.e.
// an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and
// `dims_signature` contains [1, -1, -1, 3]).
const TfLiteIntArray* dims_signature;
} TfLiteTensor;
#else
// Specific reduced TfLiteTensor struct for TF Micro runtime. This struct
// contains only the minimum fields required to initialize and prepare a micro
// inference graph. The fields in this struct have been ordered from
// largest-to-smallest for optimal struct sizeof.
//
// NOTE: This flag is opt-in only at compile time.
typedef struct TfLiteTensor {
// TODO(b/155784997): Consider consolidating these quantization fields:
// Quantization information. Replaces params field above.
TfLiteQuantization quantization;
// Quantization information.
TfLiteQuantizationParams params;
// A union of data pointers. The appropriate type should be used for a typed
// tensor based on `type`.
TfLitePtrUnion data;
// A pointer to a structure representing the dimensionality interpretation
// that the buffer should have. NOTE: the product of elements of `dims`
// and the element datatype size should be equal to `bytes` below.
TfLiteIntArray* dims;
// The number of bytes required to store the data of this Tensor. I.e.
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
// type is kTfLiteFloat32 and dims = {3, 2} then
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
size_t bytes;
// The data type specification for data stored in `data`. This affects
// what member of `data` union should be used.
TfLiteType type;
// How memory is mapped
// kTfLiteMmapRo: Memory mapped read only.
// i.e. weights
// kTfLiteArenaRw: Arena allocated read write memory
// (i.e. temporaries, outputs).
TfLiteAllocationType allocation_type;
// True if the tensor is a variable.
bool is_variable;
} TfLiteTensor;
#endif // TF_LITE_STATIC_MEMORY
#ifndef TF_LITE_STATIC_MEMORY
// Free data memory of tensor `t`.
void TfLiteTensorDataFree(TfLiteTensor* t);
// Free quantization data.
void TfLiteQuantizationFree(TfLiteQuantization* quantization);
// Free sparsity parameters.
void TfLiteSparsityFree(TfLiteSparsity* sparsity);
// Free memory of tensor `t`.
void TfLiteTensorFree(TfLiteTensor* t);
// Set all of a tensor's fields (and free any previously allocated data).
void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
TfLiteQuantizationParams quantization, char* buffer,
size_t size, TfLiteAllocationType allocation_type,
const void* allocation, bool is_variable,
TfLiteTensor* tensor);
// Resize the allocated data of a (dynamic) tensor. Tensors with allocation
// types other than kTfLiteDynamic will be ignored.
void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor);
#endif // TF_LITE_STATIC_MEMORY
// A structure representing an instance of a node.
// This structure only exhibits the inputs, outputs and user defined data, not
// other features like the type.
typedef struct TfLiteNode {
// Inputs to this node expressed as indices into the simulator's tensors.
TfLiteIntArray* inputs;
// Outputs to this node expressed as indices into the simulator's tensors.
TfLiteIntArray* outputs;
// intermediate tensors to this node expressed as indices into the simulator's
// tensors.
TfLiteIntArray* intermediates;
// Temporary tensors uses during the computations. This usually contains no
// tensors, but ops are allowed to change that if they need scratch space of
// any sort.
TfLiteIntArray* temporaries;
// Opaque data provided by the node implementer through `Registration.init`.
void* user_data;
// Opaque data provided to the node if the node is a builtin. This is usually
// a structure defined in builtin_op_data.h
void* builtin_data;
// Custom initial data. This is the opaque data provided in the flatbuffer.
// WARNING: This is an experimental interface that is subject to change.
const void* custom_initial_data;
int custom_initial_data_size;
// The pointer to the delegate. This is non-null only when the node is
// created by calling `interpreter.ModifyGraphWithDelegate`.
// WARNING: This is an experimental interface that is subject to change.
struct TfLiteDelegate* delegate;
} TfLiteNode;
// WARNING: This is an experimental interface that is subject to change.
//
// Currently, TfLiteDelegateParams has to be allocated in a way that it's
// trivially destructable. It will be stored as `builtin_data` field in
// `TfLiteNode` of the delegate node.
//
// See also the `CreateDelegateParams` function in `interpreter.cc` details.
typedef struct TfLiteDelegateParams {
struct TfLiteDelegate* delegate;
TfLiteIntArray* nodes_to_replace;
TfLiteIntArray* input_tensors;
TfLiteIntArray* output_tensors;
} TfLiteDelegateParams;
typedef struct TfLiteContext {
// Number of tensors in the context.
size_t tensors_size;
// The execution plan contains a list of the node indices in execution
// order. execution_plan->size is the current number of nodes. And,
// execution_plan->data[0] is the first node that needs to be run.
// TfLiteDelegates can traverse the current execution plan by iterating
// through each member of this array and using GetNodeAndRegistration() to
// access details about a node. i.e.
// TfLiteIntArray* execution_plan;
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan));
// for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) {
// int node_index = execution_plan->data[exec_index];
// TfLiteNode* node;
// TfLiteRegistration* reg;
// context->GetNodeAndRegistration(context, node_index, &node, ®);
// }
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context,
TfLiteIntArray** execution_plan);
// An array of tensors in the interpreter context (of length `tensors_size`)
TfLiteTensor* tensors;
// opaque full context ptr (an opaque c++ data structure)
void* impl_;
// Request memory pointer be resized. Updates dimensions on the tensor.
// NOTE: ResizeTensor takes ownership of newSize.
TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor,
TfLiteIntArray* new_size);
// Request that an error be reported with format string msg.
void (*ReportError)(struct TfLiteContext*, const char* msg, ...);
// Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If
// non-null, the value pointed to by `first_new_tensor_index` will be set to
// the index of the first new tensor.
TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add,
int* first_new_tensor_index);
// Get a Tensor node by node_index.
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*GetNodeAndRegistration)(
struct TfLiteContext*, int node_index, TfLiteNode** node,
struct TfLiteRegistration** registration);
// Replace ops with one or more stub delegate operations. This function
// does not take ownership of `nodes_to_replace`.
TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)(
struct TfLiteContext*, struct TfLiteRegistration registration,
const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate);
// Number of threads that are recommended to subsystems like gemmlowp and
// eigen.
int recommended_num_threads;
// Access external contexts by type.
// WARNING: This is an experimental interface that is subject to change.
TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*,
TfLiteExternalContextType);
// Set the value of a external context. Does not take ownership of the
// pointer.
// WARNING: This is an experimental interface that is subject to change.
void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType,
TfLiteExternalContext*);
// Flag for allowing float16 precision for FP32 calculation.
// default: false.
// WARNING: This is an experimental API and subject to change.
bool allow_fp32_relax_to_fp16;
// Pointer to the op-level profiler, if set; nullptr otherwise.
void* profiler;
// Allocate persistent buffer which has the same life time as the interpreter.
// The memory is allocated from heap for TFL, and from tail in TFLM.
// If *ptr is not nullptr, the pointer will be reallocated.
// This method is only available in Prepare stage.
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*AllocatePersistentBuffer)(struct TfLiteContext* ctx,
size_t bytes, void** ptr);
// Allocate a buffer which will be deallocated right after invoke phase.
// The memory is allocated from heap in TFL, and from volatile arena in TFLM.
// This method is only available in invoke stage.
// NOTE: If possible use RequestScratchBufferInArena method to avoid memory
// allocation during inference time.
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*AllocateBufferForEval)(struct TfLiteContext* ctx, size_t bytes,
void** ptr);
// Request a scratch buffer in the arena through static memory planning.
// This method is only available in Prepare stage and the buffer is allocated
// by the interpreter between Prepare and Eval stage. In Eval stage,
// GetScratchBuffer API can be used to fetch the address.
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*RequestScratchBufferInArena)(struct TfLiteContext* ctx,
size_t bytes, int* buffer_idx);
// Get the scratch buffer pointer.
// This method is only available in Eval stage.
// WARNING: This is an experimental interface that is subject to change.
void* (*GetScratchBuffer)(struct TfLiteContext* ctx, int buffer_idx);
// Resize the memory pointer of the `tensor`. This method behaves the same as
// `ResizeTensor`, except that it makes a copy of the shape array internally
// so the shape array could be deallocated right afterwards.
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*ResizeTensorExplicit)(struct TfLiteContext* ctx,
TfLiteTensor* tensor, int dims,
const int* shape);
// This method provides a preview of post-delegation partitioning. Each
// TfLiteDelegateParams in the referenced array corresponds to one instance of
// the delegate kernel.
// Example usage:
//
// TfLiteIntArray* nodes_to_replace = ...;
// TfLiteDelegateParams* params_array;
// int num_partitions = 0;
// TF_LITE_ENSURE_STATUS(context->PreviewDelegatePartitioning(
// context, delegate, nodes_to_replace, ¶ms_array, &num_partitions));
// for (int idx = 0; idx < num_partitions; idx++) {
// const auto& partition_params = params_array[idx];
// ...
// }
//
// NOTE: The context owns the memory referenced by partition_params_array. It
// will be cleared with another call to PreviewDelegateParitioning, or after
// TfLiteDelegateParams::Prepare returns.
//
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*PreviewDelegatePartitioning)(
struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace,
TfLiteDelegateParams** partition_params_array, int* num_partitions);
} TfLiteContext;
typedef struct TfLiteRegistration {
// Initializes the op from serialized data.
// If a built-in op:
// `buffer` is the op's params data (TfLiteLSTMParams*).
// `length` is zero.
// If custom op:
// `buffer` is the op's `custom_options`.
// `length` is the size of the buffer.
//
// Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer
// or an instance of a struct).
//
// The returned pointer will be stored with the node in the `user_data` field,
// accessible within prepare and invoke functions below.
// NOTE: if the data is already in the desired format, simply implement this
// function to return `nullptr` and implement the free function to be a no-op.
void* (*init)(TfLiteContext* context, const char* buffer, size_t length);
// The pointer `buffer` is the data previously returned by an init invocation.
void (*free)(TfLiteContext* context, void* buffer);
// prepare is called when the inputs this node depends on have been resized.
// context->ResizeTensor() can be called to request output tensors to be
// resized.
//
// Returns kTfLiteOk on success.
TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node);
// Execute the node (should read node->inputs and output to node->outputs).
// Returns kTfLiteOk on success.
TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node);
// profiling_string is called during summarization of profiling information
// in order to group executions together. Providing a value here will cause a
// given op to appear multiple times is the profiling report. This is
// particularly useful for custom ops that can perform significantly
// different calculations depending on their `user-data`.
const char* (*profiling_string)(const TfLiteContext* context,
const TfLiteNode* node);
// Builtin codes. If this kernel refers to a builtin this is the code
// of the builtin. This is so we can do marshaling to other frameworks like
// NN API.
// Note: It is the responsibility of the registration binder to set this
// properly.
int32_t builtin_code;
// Custom op name. If the op is a builtin, this will be null.
// Note: It is the responsibility of the registration binder to set this
// properly.
// WARNING: This is an experimental interface that is subject to change.
const char* custom_name;
// The version of the op.
// Note: It is the responsibility of the registration binder to set this
// properly.
int version;
} TfLiteRegistration;
// The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the
// values should be 1, 2, 4, 8, ...etc.
typedef enum TfLiteDelegateFlags {
kTfLiteDelegateFlagsNone = 0,
// The flag is set if the delegate can handle dynamic sized tensors.
// For example, the output shape of a `Resize` op with non-constant shape
// can only be inferred when the op is invoked.
// In this case, the Delegate is responsible for calling
// `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling
// `ResizeTensor` when invoking the op.
//
// If the delegate isn't capable to handle dynamic tensors, this flag need
// to be set to false.
kTfLiteDelegateFlagsAllowDynamicTensors = 1
} TfLiteDelegateFlags;
// WARNING: This is an experimental interface that is subject to change.
typedef struct TfLiteDelegate {
// Data that delegate needs to identify itself. This data is owned by the
// delegate. The delegate is owned in the user code, so the delegate is
// responsible for doing this when it is destroyed.
void* data_;
// Invoked by ModifyGraphWithDelegate. This prepare is called, giving the
// delegate a view of the current graph through TfLiteContext*. It typically
// will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels()
// to ask the TensorFlow lite runtime to create macro-nodes to represent
// delegated subgraphs of the original graph.
TfLiteStatus (*Prepare)(TfLiteContext* context,
struct TfLiteDelegate* delegate);
// Copy the data from delegate buffer handle into raw memory of the given
// 'tensor'. Note that the delegate is allowed to allocate the raw bytes as
// long as it follows the rules for kTfLiteDynamic tensors, in which case this
// cannot be null.
TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context,
struct TfLiteDelegate* delegate,
TfLiteBufferHandle buffer_handle,
TfLiteTensor* tensor);
// Copy the data from raw memory of the given 'tensor' to delegate buffer
// handle. This can be null if the delegate doesn't use its own buffer.
TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context,
struct TfLiteDelegate* delegate,
TfLiteBufferHandle buffer_handle,
TfLiteTensor* tensor);
// Free the Delegate Buffer Handle. Note: This only frees the handle, but
// this doesn't release the underlying resource (e.g. textures). The
// resources are either owned by application layer or the delegate.
// This can be null if the delegate doesn't use its own buffer.
void (*FreeBufferHandle)(TfLiteContext* context,
struct TfLiteDelegate* delegate,
TfLiteBufferHandle* handle);
// Bitmask flags. See the comments in `TfLiteDelegateFlags`.
int64_t flags;
} TfLiteDelegate;
// Build a 'null' delegate, with all the fields properly set to their default
// values.
TfLiteDelegate TfLiteDelegateCreate();
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
#endif // ION_BB_DNN_TENSORFLOWLITE_TYPES_H