-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
147 lines (120 loc) · 5.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers import batch_norm
LEARNING_RATE = 0.0002
class DCGAN():
def __init__(self, batch_size=128, n_classes=10, image_size=28, image_depth=1):
assert batch_size >= image_size, "Batch size must be higher than n_classes due to the summary"
with tf.variable_scope("dcgan"):
self.batch_size = batch_size
self.n_classes = n_classes
self.image_size = image_size
self.image_depth = image_depth
self.conv_size = int(self.image_size / 4)
self.label = tf.placeholder(tf.int32, [self.batch_size], name='label')
self.label_onehot = tf.one_hot(self.label, self.n_classes)
self.label_map = tf.reshape(
self.label_onehot, [self.batch_size, 1, 1, self.n_classes])
self.real_images = tf.placeholder(
tf.float32,
[self.batch_size, self.image_size, self.image_size, self.image_depth],
name='real_images')
self.mask = tf.placeholder(tf.float32, [self.batch_size], 'mask')
with tf.variable_scope("generate"):
self._init_generate()
with tf.variable_scope("discriminate"):
self._init_discriminate()
with tf.variable_scope("losses"):
self._init_losses()
def _init_generate(self):
self.random = tf.placeholder(tf.float32, [self.batch_size, 100])
# input_layer = self.random
input_layer = tf.concat([self.random, self.label_onehot], axis=1)
h1 = slim.fully_connected(input_layer, 512)
h1 = slim.dropout(h1, 0.5)
h1 = batch_norm(h1)
h2 = batch_norm(slim.fully_connected(h1, 128 * self.conv_size * self.conv_size))
h2 = tf.reshape(h2, [self.batch_size, self.conv_size, self.conv_size, 128])
c1 = slim.conv2d_transpose(
h2, 64, [5, 5], 2, normalizer_fn=slim.batch_norm,
padding="SAME",
)
# No batchnorm here on purpose
self.generations = tf.nn.sigmoid(
slim.conv2d_transpose(
c1, self.image_depth, [5, 5], 2, activation_fn=None,
padding="SAME",
)
)
def _init_discriminate(self):
im_mask = tf.tile(
tf.reshape(self.mask, [self.batch_size, 1, 1, 1]),
[1, self.image_size, self.image_size, self.image_depth]
)
# No batchnorm here on purpose
input_images = self.real_images * im_mask + self.generations * (1 - im_mask)
# Convolution 1
conv1 = slim.conv2d(
input_images,
num_outputs=32, kernel_size=[5, 5],
stride=[2, 2], padding='SAME',
normalizer_fn=slim.batch_norm,
)
level1 = conv1
# Convolution 2
conv2 = slim.conv2d(
level1,
num_outputs=32, kernel_size=[5, 5],
stride=[2, 2], padding='SAME',
normalizer_fn=slim.batch_norm,
)
level2 = conv2
# Level 3 : Fully connected
level3 = slim.fully_connected(
slim.flatten(level2),
100,
)
level3 = slim.dropout(level3, 0.5)
# level3 = tf.concat([slim.flatten(level3), self.label_onehot], axis=1)
self.discriminate_output = slim.fully_connected(
level3,
self.n_classes,
activation_fn=None
)
def _init_losses(self):
with tf.variable_scope("generator"):
# generator loss
self.generator_loss = tf.reduce_mean(
tf.reshape((1 - self.mask), [self.batch_size, 1]) *
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.discriminate_output,
labels=self.label_onehot,
name="loss"
)
)
generator_variables = list(filter(
lambda v: v.name.startswith('dcgan/generate'),
tf.trainable_variables())
)
self.generator_train_step = tf.train.AdamOptimizer(LEARNING_RATE, beta1=0.5).minimize(
self.generator_loss, var_list=generator_variables,
name="train_step",
)
with tf.variable_scope("discriminator"):
discriminator_labels = tf.reshape(self.mask, [self.batch_size, 1]) * self.label_onehot
self.discriminator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=tf.squeeze(self.discriminate_output),
labels=discriminator_labels
),
name="loss"
)
discriminator_variables = list(filter(
lambda v: v.name.startswith('dcgan/discriminate'),
tf.trainable_variables()))
self.discriminator_train_step = tf.train.AdamOptimizer(LEARNING_RATE, beta1=0.5).minimize(
self.discriminator_loss, var_list=discriminator_variables,
name="train_step",
)
if __name__ == '__main__':
DCGAN()