-
Notifications
You must be signed in to change notification settings - Fork 8
/
infer.py
118 lines (86 loc) · 2.73 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python3
# Written by feymanpriv([email protected])
""" inference """
import sys
import numpy as np
import cv2
import math
import paddle
_MEAN = [0.48145466, 0.4578275, 0.40821073]
_SD = [0.26862954, 0.26130258, 0.27577711]
preprocess_ops = [
[resize, 512],
[center_crop, 512],
[convert_color],
[swapaxisimg2blob],
[convert_to],
[normalize, _MEAN, _SD],
]
def predict(imgpath):
"""infer"""
img = cv2.imread(imgpath)
img = preprocess(img, preprocess_ops)
data = np.expand_dims(img, axis=0)
paddle.enable_static()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
prog, feed_names, fetch_targets = fluid.io.load_inference_model(
"./DOLG-infermodel/infermodel50", exe, 'model','params')
fetch_list_name = [a.name for a in fetch_targets]
print(fetch_list_name)
#data = np.ones((1,3,512,512))
result = exe.run(prog, fetch_list=fetch_targets,
feed={'image': data})
print(result)
def normalize(im, mean, std):
"""Performs per-channel normalization (CHW format)."""
for i in range(im.shape[0]):
im[i] = im[i] - mean[i]
im[i] = im[i] / std[i]
return im
def zero_pad(im, pad_size):
"""Performs zero padding (CHW format)."""
pad_width = ((0, 0), (pad_size, pad_size), (pad_size, pad_size))
return np.pad(im, pad_width, mode="constant")
def resize(im, size):
"""Performs scaling (HWC format)."""
h, w = im.shape[:2]
if (w <= h and w == size) or (h <= w and h == size):
return im
h_new, w_new = size, size
if w < h:
h_new = int(math.floor((float(h) / w) * size))
else:
w_new = int(math.floor((float(w) / h) * size))
im = cv2.resize(im, (w_new, h_new), interpolation=cv2.INTER_LINEAR)
return im.astype(np.float32)
def center_crop(im, size):
"""Performs center cropping (HWC format)."""
h, w = im.shape[:2]
y = int(math.ceil((h - size) / 2))
x = int(math.ceil((w - size) / 2))
im_crop = im[y: (y + size), x: (x + size), :]
assert im_crop.shape[:2] == (size, size)
return im_crop
def swapaxisimg2blob(im):
"""Performs HWC -> CHW"""
return im.transpose([2, 0, 1]).copy()
def convert_color(im):
"""Performs BGR -> RGB"""
return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
def convert_to(im):
"""Convert to array"""
im = im / 255.0
return im
def preprocess(im, operators):
"""Wrapper"""
for op in operators:
func, args = op[0], op[1:]
im = func(im, *args)
return im
if __name__ == "__main__":
if len(sys.argv)>1 :
func = getattr(sys.modules[__name__], sys.argv[1])
func(*sys.argv[2:])
else:
print('infer.py predict your/image/path')