diff --git a/docs/source/api/temperature.rst b/docs/source/api/temperature.rst index 5143338c1..bf5e3fc2c 100644 --- a/docs/source/api/temperature.rst +++ b/docs/source/api/temperature.rst @@ -7,6 +7,10 @@ Temperature :members: :show-inheritance: +.. autoclass:: TemperatureFromXDMF + :members: + :show-inheritance: + .. autoclass:: HeatTransferProblem :members: :show-inheritance: \ No newline at end of file diff --git a/docs/source/theory.rst b/docs/source/theory.rst index 2f64c3ad7..251a9f646 100644 --- a/docs/source/theory.rst +++ b/docs/source/theory.rst @@ -52,7 +52,7 @@ Continuity of local partial pressure :math:`P` at interfaces between materials h .. math:: :label: eq_Sievert - P = \frac{c_\mathrm{m}^2}{K_S^2} + P = \left(\frac{c_\mathrm{m}}{K_S}\right)^2 where :math:`K_S` is the material solubility (or Sivert's constant). @@ -94,8 +94,9 @@ In FESTIM, the conservation of chemical potential is obtained by a change of var \theta = \begin{cases} - \frac{c_\mathrm{m}^2}{K_S^2} & \text{in Sievert materials} \\ - \frac{c_\mathrm{m}}{K_H} & \text{in Henry materials} + \left(\dfrac{c_\mathrm{m}}{K_S}\right)^2 & \text{in Sievert materials} \\ + \\ + \dfrac{c_\mathrm{m}}{K_H} & \text{in Henry materials} \end{cases} The variable :math:`\theta` is continuous at interfaces. @@ -210,10 +211,19 @@ Assuming second order recombination, :math:`\varphi_{\mathrm{recomb}}` can also By substituting Equation :eq:`eq_flux_balance_approx2` into :eq:`eq_flux_balance_approx1` one can obtain: .. math:: - :label: eq_DirichletBC_triangle_full + :label: eq_DirichletBC_triangle_recomb c_\mathrm{m} = \frac{\varphi_{\mathrm{imp}} R_p}{D} + \sqrt{\frac{\varphi_{\mathrm{imp}}}{K_r}} +Similarly, dissociation can be accounted for: + +.. math:: + :label: eq_DirichletBC_triangle_full + + c_\mathrm{m} = \frac{\varphi_{\mathrm{imp}} R_p}{D} + \sqrt{\frac{\varphi_{\mathrm{imp}}+K_d P}{K_r}} + +where :math:`K_d` is the dissociation coefficient. + When recombination is fast (i.e. :math:`K_r\rightarrow\infty`), Equation :eq:`eq_DirichletBC_triangle_full` can be reduced to: .. math:: @@ -252,7 +262,7 @@ Recombination and dissociation fluxes can also be applied: J \cdot \mathrm{\textbf{n}} = -D\nabla c_\mathrm{m} \cdot \mathrm{\textbf{n}} = K_d P - K_r c_\mathrm{m}^{\{1,2\}} ~\text{on}~\delta\Omega -where :math:`K_d` is the dissociation coefficient and :math:`K_r` is the recombination coefficient. In Equation :eq:`eq_NeumannBC_DisRec`, the exponent of :math:`c_\mathrm{m}` is either 1 or 2 depending on the reaction order. +In Equation :eq:`eq_NeumannBC_DisRec`, the exponent of :math:`c_\mathrm{m}` is either 1 or 2 depending on the reaction order. These boundary conditions are Robin boundary conditions since the gradient is imposed as a function of the solution. Finally, convective heat fluxes can be applied to boundaries: diff --git a/docs/source/userguide/boundary_conditions.rst b/docs/source/userguide/boundary_conditions.rst index cde7f9942..355148a0d 100644 --- a/docs/source/userguide/boundary_conditions.rst +++ b/docs/source/userguide/boundary_conditions.rst @@ -141,6 +141,8 @@ Plasma implantation can be approximated by a Dirichlet boundary condition with t # non-instantaneous recombination my_bc = ImplantationDirichlet(surfaces=3, phi=1e10 + t, R_p=1e-9, D_0=1, E_D=0.1, Kr_0=2, E_Kr=0.2) + # non-instantaneous recombination and dissociation + my_bc = ImplantationDirichlet(surfaces=3, phi=1e10 + t, R_p=1e-9, D_0=1, E_D=0.1, Kr_0=2, E_Kr=0.2, Kd_0=3, E_Kd=0.3, P=4) ----------------- Heat transfer BCs diff --git a/festim/boundary_conditions/dirichlets/dc_imp.py b/festim/boundary_conditions/dirichlets/dc_imp.py index b82e85315..f53b43641 100644 --- a/festim/boundary_conditions/dirichlets/dc_imp.py +++ b/festim/boundary_conditions/dirichlets/dc_imp.py @@ -23,7 +23,7 @@ class ImplantationDirichlet(DirichletBC): The details of the approximation can be found in https://www.nature.com/articles/s41598-020-74844-w - c = phi*R_p/D + (phi+Kd*P/Kr)**0.5 + c = phi*R_p/D + ((phi+Kd*P)/Kr)**0.5 Args: surfaces (list or int): the surfaces of the BC