-
Notifications
You must be signed in to change notification settings - Fork 126
/
colorthief.py
422 lines (364 loc) · 13.2 KB
/
colorthief.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# -*- coding: utf-8 -*-
"""
colorthief
~~~~~~~~~~
Grabbing the color palette from an image.
:copyright: (c) 2015 by Shipeng Feng.
:license: BSD, see LICENSE for more details.
"""
__version__ = '0.2.1'
import math
from PIL import Image
class cached_property(object):
"""Decorator that creates converts a method with a single
self argument into a property cached on the instance.
"""
def __init__(self, func):
self.func = func
def __get__(self, instance, type):
res = instance.__dict__[self.func.__name__] = self.func(instance)
return res
class ColorThief(object):
"""Color thief main class."""
def __init__(self, file):
"""Create one color thief for one image.
:param file: A filename (string) or a file object. The file object
must implement `read()`, `seek()`, and `tell()` methods,
and be opened in binary mode.
"""
self.image = Image.open(file)
def get_color(self, quality=10):
"""Get the dominant color.
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster a color will be returned but
the greater the likelihood that it will not be the
visually most dominant color
:return tuple: (r, g, b)
"""
palette = self.get_palette(5, quality)
return palette[0]
def get_palette(self, color_count=10, quality=10):
"""Build a color palette. We are using the median cut algorithm to
cluster similar colors.
:param color_count: the size of the palette, max number of colors
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster the palette generation, but the
greater the likelihood that colors will be missed.
:return list: a list of tuple in the form (r, g, b)
"""
image = self.image.convert('RGBA')
width, height = image.size
pixels = image.getdata()
pixel_count = width * height
valid_pixels = []
for i in range(0, pixel_count, quality):
r, g, b, a = pixels[i]
# If pixel is mostly opaque and not white
if a >= 125:
if not (r > 250 and g > 250 and b > 250):
valid_pixels.append((r, g, b))
# Send array to quantize function which clusters values
# using median cut algorithm
cmap = MMCQ.quantize(valid_pixels, color_count)
return cmap.palette
class MMCQ(object):
"""Basic Python port of the MMCQ (modified median cut quantization)
algorithm from the Leptonica library (http://www.leptonica.com/).
"""
SIGBITS = 5
RSHIFT = 8 - SIGBITS
MAX_ITERATION = 1000
FRACT_BY_POPULATIONS = 0.75
@staticmethod
def get_color_index(r, g, b):
return (r << (2 * MMCQ.SIGBITS)) + (g << MMCQ.SIGBITS) + b
@staticmethod
def get_histo(pixels):
"""histo (1-d array, giving the number of pixels in each quantized
region of color space)
"""
histo = dict()
for pixel in pixels:
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
index = MMCQ.get_color_index(rval, gval, bval)
histo[index] = histo.setdefault(index, 0) + 1
return histo
@staticmethod
def vbox_from_pixels(pixels, histo):
rmin = 1000000
rmax = 0
gmin = 1000000
gmax = 0
bmin = 1000000
bmax = 0
for pixel in pixels:
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
rmin = min(rval, rmin)
rmax = max(rval, rmax)
gmin = min(gval, gmin)
gmax = max(gval, gmax)
bmin = min(bval, bmin)
bmax = max(bval, bmax)
return VBox(rmin, rmax, gmin, gmax, bmin, bmax, histo)
@staticmethod
def median_cut_apply(histo, vbox):
if not vbox.count:
return (None, None)
rw = vbox.r2 - vbox.r1 + 1
gw = vbox.g2 - vbox.g1 + 1
bw = vbox.b2 - vbox.b1 + 1
maxw = max([rw, gw, bw])
# only one pixel, no split
if vbox.count == 1:
return (vbox.copy, None)
# Find the partial sum arrays along the selected axis.
total = 0
sum_ = 0
partialsum = {}
lookaheadsum = {}
do_cut_color = None
if maxw == rw:
do_cut_color = 'r'
for i in range(vbox.r1, vbox.r2+1):
sum_ = 0
for j in range(vbox.g1, vbox.g2+1):
for k in range(vbox.b1, vbox.b2+1):
index = MMCQ.get_color_index(i, j, k)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
elif maxw == gw:
do_cut_color = 'g'
for i in range(vbox.g1, vbox.g2+1):
sum_ = 0
for j in range(vbox.r1, vbox.r2+1):
for k in range(vbox.b1, vbox.b2+1):
index = MMCQ.get_color_index(j, i, k)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
else: # maxw == bw
do_cut_color = 'b'
for i in range(vbox.b1, vbox.b2+1):
sum_ = 0
for j in range(vbox.r1, vbox.r2+1):
for k in range(vbox.g1, vbox.g2+1):
index = MMCQ.get_color_index(j, k, i)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
for i, d in partialsum.items():
lookaheadsum[i] = total - d
# determine the cut planes
dim1 = do_cut_color + '1'
dim2 = do_cut_color + '2'
dim1_val = getattr(vbox, dim1)
dim2_val = getattr(vbox, dim2)
for i in range(dim1_val, dim2_val+1):
if partialsum[i] > (total / 2):
vbox1 = vbox.copy
vbox2 = vbox.copy
left = i - dim1_val
right = dim2_val - i
if left <= right:
d2 = min([dim2_val - 1, int(i + right / 2)])
else:
d2 = max([dim1_val, int(i - 1 - left / 2)])
# avoid 0-count boxes
while not partialsum.get(d2, False):
d2 += 1
count2 = lookaheadsum.get(d2)
while not count2 and partialsum.get(d2-1, False):
d2 -= 1
count2 = lookaheadsum.get(d2)
# set dimensions
setattr(vbox1, dim2, d2)
setattr(vbox2, dim1, getattr(vbox1, dim2) + 1)
return (vbox1, vbox2)
return (None, None)
@staticmethod
def quantize(pixels, max_color):
"""Quantize.
:param pixels: a list of pixel in the form (r, g, b)
:param max_color: max number of colors
"""
if not pixels:
raise Exception('Empty pixels when quantize.')
if max_color < 2 or max_color > 256:
raise Exception('Wrong number of max colors when quantize.')
histo = MMCQ.get_histo(pixels)
# check that we aren't below maxcolors already
if len(histo) <= max_color:
# generate the new colors from the histo and return
pass
# get the beginning vbox from the colors
vbox = MMCQ.vbox_from_pixels(pixels, histo)
pq = PQueue(lambda x: x.count)
pq.push(vbox)
# inner function to do the iteration
def iter_(lh, target):
n_color = 1
n_iter = 0
while n_iter < MMCQ.MAX_ITERATION:
vbox = lh.pop()
if not vbox.count: # just put it back
lh.push(vbox)
n_iter += 1
continue
# do the cut
vbox1, vbox2 = MMCQ.median_cut_apply(histo, vbox)
if not vbox1:
raise Exception("vbox1 not defined; shouldn't happen!")
lh.push(vbox1)
if vbox2: # vbox2 can be null
lh.push(vbox2)
n_color += 1
if n_color >= target:
return
if n_iter > MMCQ.MAX_ITERATION:
return
n_iter += 1
# first set of colors, sorted by population
iter_(pq, MMCQ.FRACT_BY_POPULATIONS * max_color)
# Re-sort by the product of pixel occupancy times the size in
# color space.
pq2 = PQueue(lambda x: x.count * x.volume)
while pq.size():
pq2.push(pq.pop())
# next set - generate the median cuts using the (npix * vol) sorting.
iter_(pq2, max_color - pq2.size())
# calculate the actual colors
cmap = CMap()
while pq2.size():
cmap.push(pq2.pop())
return cmap
class VBox(object):
"""3d color space box"""
def __init__(self, r1, r2, g1, g2, b1, b2, histo):
self.r1 = r1
self.r2 = r2
self.g1 = g1
self.g2 = g2
self.b1 = b1
self.b2 = b2
self.histo = histo
@cached_property
def volume(self):
sub_r = self.r2 - self.r1
sub_g = self.g2 - self.g1
sub_b = self.b2 - self.b1
return (sub_r + 1) * (sub_g + 1) * (sub_b + 1)
@property
def copy(self):
return VBox(self.r1, self.r2, self.g1, self.g2,
self.b1, self.b2, self.histo)
@cached_property
def avg(self):
ntot = 0
mult = 1 << (8 - MMCQ.SIGBITS)
r_sum = 0
g_sum = 0
b_sum = 0
for i in range(self.r1, self.r2 + 1):
for j in range(self.g1, self.g2 + 1):
for k in range(self.b1, self.b2 + 1):
histoindex = MMCQ.get_color_index(i, j, k)
hval = self.histo.get(histoindex, 0)
ntot += hval
r_sum += hval * (i + 0.5) * mult
g_sum += hval * (j + 0.5) * mult
b_sum += hval * (k + 0.5) * mult
if ntot:
r_avg = int(r_sum / ntot)
g_avg = int(g_sum / ntot)
b_avg = int(b_sum / ntot)
else:
r_avg = int(mult * (self.r1 + self.r2 + 1) / 2)
g_avg = int(mult * (self.g1 + self.g2 + 1) / 2)
b_avg = int(mult * (self.b1 + self.b2 + 1) / 2)
return r_avg, g_avg, b_avg
def contains(self, pixel):
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
return all([
rval >= self.r1,
rval <= self.r2,
gval >= self.g1,
gval <= self.g2,
bval >= self.b1,
bval <= self.b2,
])
@cached_property
def count(self):
npix = 0
for i in range(self.r1, self.r2 + 1):
for j in range(self.g1, self.g2 + 1):
for k in range(self.b1, self.b2 + 1):
index = MMCQ.get_color_index(i, j, k)
npix += self.histo.get(index, 0)
return npix
class CMap(object):
"""Color map"""
def __init__(self):
self.vboxes = PQueue(lambda x: x['vbox'].count * x['vbox'].volume)
@property
def palette(self):
return self.vboxes.map(lambda x: x['color'])
def push(self, vbox):
self.vboxes.push({
'vbox': vbox,
'color': vbox.avg,
})
def size(self):
return self.vboxes.size()
def nearest(self, color):
d1 = None
p_color = None
for i in range(self.vboxes.size()):
vbox = self.vboxes.peek(i)
d2 = math.sqrt(
math.pow(color[0] - vbox['color'][0], 2) +
math.pow(color[1] - vbox['color'][1], 2) +
math.pow(color[2] - vbox['color'][2], 2)
)
if d1 is None or d2 < d1:
d1 = d2
p_color = vbox['color']
return p_color
def map(self, color):
for i in range(self.vboxes.size()):
vbox = self.vboxes.peek(i)
if vbox['vbox'].contains(color):
return vbox['color']
return self.nearest(color)
class PQueue(object):
"""Simple priority queue."""
def __init__(self, sort_key):
self.sort_key = sort_key
self.contents = []
self._sorted = False
def sort(self):
self.contents.sort(key=self.sort_key)
self._sorted = True
def push(self, o):
self.contents.append(o)
self._sorted = False
def peek(self, index=None):
if not self._sorted:
self.sort()
if index is None:
index = len(self.contents) - 1
return self.contents[index]
def pop(self):
if not self._sorted:
self.sort()
return self.contents.pop()
def size(self):
return len(self.contents)
def map(self, f):
return list(map(f, self.contents))