-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathmain_predict_6DoF.py
333 lines (202 loc) · 13.8 KB
/
main_predict_6DoF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import sys
import numpy as np
import tensorflow as tf
import cv2
import scipy.io as sio
sys.path.append('./utils')
import pose_utils as pu
import os
import os.path
from glob import glob
import time
import pickle
sys.path.append('./kaffe')
sys.path.append('./ResNet')
from ThreeDMM_shape import ResNet_101 as resnet101_shape
# Global parameters
factor = 0.25
_resNetSize = 224
n_hidden1 = 2048
n_hidden2 = 4096
ifdropout = 0
gpuID = int(sys.argv[1])
input_sample_list_path = str(sys.argv[2]) #'./input_list.txt' # You can change to your own image list
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('image_size', 224, 'Image side length.')
output_path = './output_6DoF'
tf.app.flags.DEFINE_string('save_output_path', output_path, 'Directory to keep the checkpoints')
tf.app.flags.DEFINE_integer('num_gpus', 1, 'Number of gpus used for training. (0 or 1)')
tf.app.flags.DEFINE_integer('batch_size', 1, 'Batch Size') # 60
if not os.path.exists(FLAGS.save_output_path):
os.makedirs(FLAGS.save_output_path)
def extract_3dmm_pose():
########################################
# Load train image mean, train label mean and std
########################################
# labels stats on 300W-LP
train_label_mean = np.load('./train_stats/train_label_mean_300WLP.npy')
train_label_std = np.load('./train_stats/train_label_std_300WLP.npy')
Pose_label_mean = train_label_mean[:6]
Pose_label_std = train_label_std[:6]
#ShapeExpr_label_mean_300WLP = train_label_mean[6:]
#ShapeExpr_label_std_300WLP = train_label_std[6:]
# Get training image mean from Anh's ShapeNet (CVPR2017)
mean_image_shape = np.load('./train_stats/3DMM_shape_mean.npy') # 3 x 224 x 224
train_image_mean = np.transpose(mean_image_shape, [1,2,0]) # 224 x 224 x 3, [0,255]
########################################
# Build CNN graph
########################################
# placeholders for the batches
x_img = tf.placeholder(tf.float32, [None, FLAGS.image_size, FLAGS.image_size, 3])
# Resize Image
x2 = tf.image.resize_bilinear(x_img, tf.constant([224,224], dtype=tf.int32))
x2 = tf.cast(x2, 'float32')
x2 = tf.reshape(x2, [-1, 224, 224, 3])
# Image normalization
mean = tf.reshape(train_image_mean, [1, 224, 224, 3])
mean = tf.cast(mean, 'float32')
x2 = x2 - mean
########################################
# New-FPN with ResNet structure
########################################
with tf.variable_scope('shapeCNN'):
net_shape = resnet101_shape({'input': x2}, trainable=True) # False: Freeze the ResNet Layers
pool5 = net_shape.layers['pool5']
pool5 = tf.squeeze(pool5)
pool5 = tf.reshape(pool5, [1, 2048])
print pool5.get_shape() # batch_size x 2048
with tf.variable_scope('Pose'):
with tf.variable_scope('fc1'):
fc1W = tf.Variable(tf.random_normal(tf.stack([pool5.get_shape()[1].value, n_hidden1]), mean=0.0, stddev=0.01), trainable=True, name='W')
fc1b = tf.Variable(tf.zeros([n_hidden1]), trainable=True, name='baises')
fc1 = tf.nn.relu_layer(tf.reshape(pool5, [-1, int(np.prod(pool5.get_shape()[1:]))]), fc1W, fc1b, name='fc1')
print "\nfc1 shape:"
print fc1.get_shape(), fc1W.get_shape(), fc1b.get_shape() # (batch_size, 4096) (2048, 4096) (4096,)
if ifdropout == 1:
fc1 = tf.nn.dropout(fc1, prob, name='fc1_dropout')
with tf.variable_scope('fc2'):
fc2W = tf.Variable(tf.random_normal([n_hidden1, n_hidden2], mean=0.0, stddev=0.01), trainable=True, name='W')
fc2b = tf.Variable(tf.zeros([n_hidden2]), trainable=True, name='baises')
fc2 = tf.nn.relu_layer(fc1, fc2W, fc2b, name='fc2')
print fc2.get_shape(), fc2W.get_shape(), fc2b.get_shape() # (batch_size, 29 (2048, 2048) (2048,)
if ifdropout == 1:
fc2 = tf.nn.dropout(fc2, prob, name='fc2_dropout')
with tf.variable_scope('fc3'):
# Move everything into depth so we can perform a single matrix multiplication.
fc2 = tf.reshape(fc2, [FLAGS.batch_size, -1])
dim = fc2.get_shape()[1].value
print "\nfc2 dim:"
print fc2.get_shape(), dim
fc3W = tf.Variable(tf.random_normal(tf.stack([dim,6]), mean=0.0, stddev=0.01), trainable=True, name='W')
fc3b = tf.Variable(tf.zeros([6]), trainable=True, name='baises')
#print "*** label shape: " + str(len(train_label_mean))
Pose_params_ZNorm = tf.nn.xw_plus_b(fc2, fc3W, fc3b)
print "\nfc3 shape:"
print Pose_params_ZNorm.get_shape(), fc3W.get_shape(), fc3b.get_shape()
Pose_label_mean = tf.cast(tf.reshape(Pose_label_mean, [1, -1]), 'float32')
Pose_label_std = tf.cast(tf.reshape(Pose_label_std, [1, -1]), 'float32')
Pose_params = Pose_params_ZNorm * (Pose_label_std + 0.000000000000000001) + Pose_label_mean
########################################
# Start extracting 3dmm pose
########################################
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
saver_ini_shape_net = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='shapeCNN'))
saver_shapeCNN = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='shapeCNN'))
saver_Pose = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Pose'))
config = tf.ConfigProto(allow_soft_placement=True) #, log_device_placement=True)
#config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init_op)
start_time = time.time()
# For non-trainable parameters such as the parameters for batch normalization
load_path = "./models/ini_shapeNet_model_L7L_trainable.ckpt"
saver_ini_shape_net.restore(sess, load_path)
# For other trainable parameters
load_path = "./models/model_0.0001_1_18_0.0_2048_4096.ckpt"
saver_shapeCNN.restore(sess, load_path)
saver_Pose.restore(sess, load_path)
load_model_time = time.time() - start_time
print("Model restored: " + str(load_model_time))
with open(input_sample_list_path, 'r') as fin:
for line in fin:
curr_line = line.strip().split(',')
image_path = curr_line[0]
bbox = np.array([float(curr_line[1]), float(curr_line[2]), float(curr_line[3]), float(curr_line[4])]) # [lt_x, lt_y, w, h]
image_key = image_path.split('/')[-1][:-4]
image = cv2.imread(image_path,1) # BGR
image = np.asarray(image)
# Fix the grey image
if len(image.shape) < 3:
image_r = np.reshape(image, (image.shape[0], image.shape[1], 1))
image = np.append(image_r, image_r, axis=2)
image = np.append(image, image_r, axis=2)
# Crop and expand (25%) the image based on the tight bbox (from the face detector or detected lmks)
factor = [1.9255, 2.2591, 1.9423, 1.6087];
img_new = pu.preProcessImage_v2(image.copy(), bbox.copy(), factor, _resNetSize, 1)
image_array = np.reshape(img_new, [1, _resNetSize, _resNetSize, 3])
(params_pose, pool5_feats) = sess.run([Pose_params, pool5], feed_dict={x_img: image_array}) # [scale, pitch, yaw, roll, translation_x, translation_y]
params_pose = params_pose[0]
print params_pose #, pool5_feats
# save the predicted pose
with open(FLAGS.save_output_path + '/' + image_key + '.txt', 'w') as fout:
for pp in params_pose:
fout.write(str(pp) + '\n')
# Convert the 6DoF predicted pose to 3x4 projection matrix (weak-perspective projection)
# Load BFM model
shape_mat = sio.loadmat('./BFM/Model_Shape.mat')
mu_shape = shape_mat['mu_shape'].astype('float32')
expr_mat = sio.loadmat('./BFM/Model_Exp.mat')
mu_exp = expr_mat['mu_exp'].astype('float32')
mu = mu_shape + mu_exp
len_mu = len(mu)
mu = np.reshape(mu, [-1,1])
keypoints = np.reshape(shape_mat['keypoints'], [-1]) - 1 # -1 for python index
keypoints = keypoints.astype('int32')
vertex = np.reshape(mu, [len_mu/3, 3]) # # of vertices x 3
# mean shape
mesh = vertex.T # 3 x # of vertices
mesh_1 = np.concatenate([mesh, np.ones([1,len_mu/3])], axis=0) # 4 x # of vertices
# Get projection matrix from 6DoF pose
scale, pitch, yaw, roll, tx, ty = params_pose
R = pu.RotationMatrix(pitch, yaw, roll)
ProjMat = np.zeros([3,4])
ProjMat[:,:3] = scale * R
ProjMat[:,3] = np.array([tx,ty,0])
# Get predicted shape
#print ProjMat, ProjMat.shape
#print mesh_1, mesh_1.shape
pred_shape = np.matmul(ProjMat, mesh_1) # 3 x # of vertices
pred_shape = pred_shape.T # # of vertices x 3
pred_shape_x = np.reshape(pred_shape[:,0], [len_mu/3, 1])
pred_shape_z = np.reshape(pred_shape[:,2], [len_mu/3, 1])
pred_shape_y = 224 + 1 - pred_shape[:,1]
pred_shape_y = np.reshape(pred_shape_y, [len_mu/3, 1])
pred_shape = np.concatenate([pred_shape_x, pred_shape_y, pred_shape_z], 1)
# Convert shape and lmks back to the original image scale
_, bbox_new, _, lmks_filling, old_h, old_w, img_new = pu.resize_crop_rescaleCASIA(image.copy(), bbox.copy(), pred_shape.copy(), factor)
#print lmks_filling
pred_shape[:,0] = pred_shape[:,0] * old_w / 224.
pred_shape[:,1] = pred_shape[:,1] * old_h / 224.
pred_shape[:,0] = pred_shape[:,0] + bbox_new[0]
pred_shape[:,1] = pred_shape[:,1] + bbox_new[1]
# Get predicted lmks
pred_lmks = pred_shape[keypoints]
sio.savemat(FLAGS.save_output_path + '/' + image_key + '.mat', {'shape_3D': pred_shape, 'lmks_3D': pred_lmks})
#cv2.imwrite(FLAGS.save_output_path + '/' + image_key + '.jpg', img_new)
def main(_):
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=str(gpuID)
if FLAGS.num_gpus == 0:
dev = '/cpu:0'
elif FLAGS.num_gpus == 1:
dev = '/gpu:0'
else:
raise ValueError('Only support 0 or 1 gpu.')
print dev
with tf.device(dev):
extract_3dmm_pose()
if __name__ == '__main__':
tf.app.run()