-
Notifications
You must be signed in to change notification settings - Fork 16
/
uformer.py
308 lines (234 loc) · 9.67 KB
/
uformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python
# coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import sys
import torch_complex
from torch_complex import ComplexTensor
import warnings
from time import time
EPSILON = torch.finfo(torch.float32).eps
sys.path.append(os.path.dirname(sys.path[0]) + '/model')
from trans import STFT, iSTFT, MelTransform, inv_MelTransform
from conv2d_cplx import ComplexConv2d_Encoder, ComplexConv2d_Decoder
from conv2d_real import RealConv2d_Encoder, RealConv2d_Decoder
from dilated_dualpath_conformer import Dilated_Dualpath_Conformer
from fusion import fusion as fusion
from show import show_model, show_params
def tanhextern(input):
out = 10 * (1-torch.exp(-0.1*input)) / (1+torch.exp(-0.1*input))
class Uformer(nn.Module):
def __init__(self,
win_len=400,
win_inc=160,
fft_len=512,
win_type='hanning',
fid=None):
super(Uformer, self).__init__()
input_dim = win_len
output_dim = win_len
self.kernel_num = [1,8,16,32,64,128,128]
self.kernel_num_real = [1,8,16,32,64,128]
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.encoder_real = nn.ModuleList()
self.decoder_real = nn.ModuleList()
for idx in range(len(self.kernel_num)-1):
self.encoder.append(
nn.Sequential(
ComplexConv2d_Encoder(
self.kernel_num[idx],
self.kernel_num[idx+1],
kernel_size=(5, 2),
stride=(2, 1),
padding=(2, 1),
dilation=(1, 1),
groups = 1
),
nn.BatchNorm3d(self.kernel_num[idx+1]),
nn.PReLU()
)
)
for idx in range(len(self.kernel_num)-1):
self.encoder_real.append(
nn.Sequential(
RealConv2d_Encoder(
self.kernel_num[idx],
self.kernel_num[idx+1],
kernel_size=(5, 2),
stride=(2, 1),
padding=(2,1),
dilation=(1, 1),
groups = 1
),
nn.BatchNorm2d(self.kernel_num[idx+1]),
nn.PReLU()
)
)
self.conformer = Dilated_Dualpath_Conformer()
for idx in range(len(self.kernel_num)-1, 0, -1):
if idx >= 2:
self.decoder.append(
nn.Sequential(
ComplexConv2d_Decoder(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(5, 2),
stride=(2,1),
padding=(2, 0),
output_padding = (1, 0),
dilation=(1, 1),
groups = 1
),
nn.BatchNorm3d(self.kernel_num[idx-1]),
#nn.ELU()
nn.PReLU()
)
)
else:
self.decoder.append(
nn.Sequential(
ComplexConv2d_Decoder(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(5, 2),
stride=(2,1),
padding=(2, 0),
output_padding = (1, 0),
dilation=(1, 1),
groups = 1
),
)
)
for idx in range(len(self.kernel_num)-1, 0, -1):
if idx >= 2:
self.decoder_real.append(
nn.Sequential(
RealConv2d_Decoder(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(5, 2),
stride=(2,1),
padding=(2,0),
output_padding = (1, 0),
dilation=(1, 1),
groups = 1
),
nn.BatchNorm2d(self.kernel_num[idx-1]),
#nn.ELU()
nn.PReLU()
)
)
else:
self.decoder_real.append(
nn.Sequential(
RealConv2d_Decoder(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(5, 2),
stride=(2,1),
padding=(2,0),
output_padding = (1, 0),
dilation=(1, 1),
groups = 1
),
)
)
self.stft = STFT(frame_len=win_len, frame_hop=win_inc)
self.istft = iSTFT(frame_len=win_len, frame_hop=win_inc)
show_model(self, fid)
show_params(self, fid)
def flatten_parameters(self):
self.enhance.flatten_parameters()
def forward(self, inputs, src):
warnings.filterwarnings('ignore')
inputs_real, inputs_imag = self.stft(inputs[:,0].unsqueeze(1))
src_real, src_imag = self.stft(src[:,0])
src = self.istft((src_real, src_imag))
src_mag, src_pha = torch.sqrt(torch.clamp(src_real ** 2 + src_imag ** 2, EPSILON)), torch.atan2(src_imag+EPSILON, src_real)
src_mag = src_mag ** 0.5
src_real, src_imag = src_mag * torch.cos(src_pha), src_mag * torch.sin(src_pha)
src_cplx = torch.stack([src_real, src_imag], 1)
mag, phase = torch.sqrt(torch.clamp(inputs_real ** 2 + inputs_imag ** 2, EPSILON)), torch.atan2(inputs_imag+EPSILON, inputs_real)
mag = mag ** 0.5
mag_input = []
mag_input.append(mag)
inputs_real, inputs_imag = mag * torch.cos(phase), mag * torch.sin(phase)
out = torch.stack([inputs_real, inputs_imag], -1) # B C F T 2
out = out[:, :, 1:]
mag = mag[:, :, 1:]
encoder_out = []
mag_out = []
for idx in range(len(self.encoder)):
out = self.encoder[idx](out)
mag = self.encoder_real[idx](mag)
out, mag = fusion(out, mag)
mag_out.append(mag)
encoder_out.append(out)
out, mag = self.conformer(out, mag)
for idx in range(len(self.decoder)):
out_cat = torch.cat([encoder_out[-1 - idx],out],1)
out = self.decoder[idx](out_cat)
mag_cat = torch.cat([mag_out[-1 - idx],mag],1)
mag = self.decoder_real[idx](mag_cat)
out, mag = fusion(out, mag)
mag = torch.sigmoid(mag)
mag = F.pad(mag, [0,0,1,0])
mag = mag[:,0] * mag_input[0][:,0]
mask_real = out[...,0]
mask_imag = out[...,1]
mask_mags = torch.sqrt(torch.clamp(mask_real**2 + mask_imag**2, EPSILON))
real_phase = mask_real/(mask_mags+EPSILON)
imag_phase = mask_imag/(mask_mags+EPSILON)
mask_mags = torch.tanh(mask_mags+EPSILON)
mask_phase = torch.atan2(imag_phase+EPSILON, real_phase)
mask_mags = F.pad(mask_mags, [0,0,1,0])
mask_phase = F.pad(mask_phase, [0,0,1,0])
est_mags = mask_mags[:, 0]*mag_input[0][:,0]
est_phase = phase[:, 0] + mask_phase[:, 0]
mag_compress, pha_compress = est_mags, est_phase
mag_compress = (mag_compress + mag)*0.5
real, imag = mag_compress * torch.cos(pha_compress), mag_compress * torch.sin(pha_compress)
output_real = []
output_imag = []
output = []
output_real.append(real)
output_imag.append(imag)
mag_compress = mag_compress ** 2
real, imag = mag_compress * torch.cos(pha_compress), mag_compress * torch.sin(pha_compress)
spk1 = self.istft((real, imag))
output.append(spk1)
output = torch.stack(output, 1)
output = output.squeeze(1)
output_real = torch.stack(output_real, 1)
output_imag = torch.stack(output_imag, 1)
output_real = output_real.squeeze(1) # N x C x F x T
output_imag = output_imag.squeeze(1)
output_cplx = torch.stack([output_real, output_imag], 1) # N x 2 x C x F x T
return output, src, output_cplx, src_cplx
def get_params(self, weight_decay=0.0):
weights, biases = [], []
for name, param in self.named_parameters():
if 'bias' in name:
biases += [param]
else:
weights += [param]
params = [{
'params': weights,
'weight_decay': weight_decay,
}, {
'params': biases,
'weight_decay': 0.0,
}]
return params
if __name__ == '__main__':
torch.manual_seed(10)
torch.set_num_threads(4)
import soundfile as sf
import numpy as np
net = Uformer()
inputs = torch.randn([10,1,64000])
print(inputs.shape)
outputs = net(inputs,inputs)