-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
108 lines (91 loc) · 3.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import json
import logging
from torch.utils.tensorboard import SummaryWriter
from polyaxon_client.tracking import get_data_paths, get_outputs_path
from arguments import parse_args
from train import get_transform_dict, train
from datasets.datasets import get_datasets
from datasets.loaders import create_loaders
from utils.train import model_init
from utils.misc import load_dataset_indices, save_dataset_indices, get_save_path, initialize_logger, seed, save_args
from models.model_factory import MODEL_GETTERS
logger = logging.getLogger()
def main(args, save_path: str):
"""
Main function that sets up and starts the RotNet training
"""
writer = SummaryWriter(save_path)
# Load initial dataset from path specified by args.resume / args.initial_indices if set
initial_indices = None
if args.resume:
initial_indices = load_dataset_indices(args.resume)
elif args.initial_indices:
path, file_name = os.path.split(args.initial_indices)
initial_indices = load_dataset_indices(path, file_name)
# Get dictionary which contains train transforms (both for labeled and unlabeled batches) as well as
# the transform for the validation and test set
transform_dict = get_transform_dict(args)
# Get torch dataset objects from specified dataset
train_set, validation_set, test_set = get_datasets(
args.data_dir,
args.dataset,
args.num_validation,
args.is_pct,
transform_dict["train"],
transform_dict["test"],
dataset_indices=initial_indices
)
save_dataset_indices(save_path, train_set, validation_set)
# Get loaders for the labeled and unlabeled train set as well as the validation and test set
args.iters_per_epoch = 10 # (len(train_set) // args.batch_size) + 1
train_loader, validation_loader, test_loader = create_loaders(
args,
train_set,
validation_set,
test_set,
args.batch_size,
total_iters=args.iters_per_epoch,
num_workers=args.num_workers,
)
# Print and log dataset stats
logger.info("-------- Starting Unsupervised Rotation Prediction Training --------")
logger.info("\t- Train set: {}".format(len(train_set)))
logger.info("\t- Validation set: {}".format(len(validation_set)))
logger.info("\t- Test set: {}".format(len(test_set)))
logger.info("-------- MODEL --------")
args.num_classes = 4
model = MODEL_GETTERS[args.model](num_classes=args.num_classes)
model.apply(model_init)
num_params = sum([p.numel() for p in model.parameters()])
logger.info("\t- Number of parameters: {}".format(num_params))
logger.info("\t- Number of target classes: {}".format(args.num_classes))
# Start rotation prediction training
train(
args,
model,
train_loader,
validation_loader,
test_loader,
writer,
save_path=save_path
)
save_args(args, save_path)
if __name__ == '__main__':
# Read command line arguments
args = parse_args()
# Set up paths if code is run as polyaxon experiment
if args.polyaxon:
args.out_dir = os.path.join(get_outputs_path(), args.out_dir)
if args.initial_model:
args.initial_model = os.path.join(get_data_paths()['data1'], args.initial_model)
args.seed = json.load(open(os.path.join(args.initial_model, "args.json")))[
"seed"
]
elif args.resume:
args.resume = os.path.join(get_data_paths()["data1"], args.resume)
save_path = get_save_path(args)
initialize_logger(save_path)
args.seed = seed(args.random_seed, args.seed)
logger.info("Seed is set to {}".format(args.seed))
main(args, save_path)