-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathModel.py
110 lines (89 loc) · 4.85 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Abdur. R. Fayjie, R. Azad, Claude Kauffman, Ismail Ben Ayed, Marco Pedersoli and Jose Dolz "Semi-supervised Few-Shot Learning for Medical Image Segmentation", arXiv preprint arXiv, 2020
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import keras
import keras.layers as layers
from keras.models import Model
from keras.layers.core import Lambda
import encoder_models as EM
import numpy as np
from keras import backend as K
def GlobalAveragePooling2D_r(f):
def func(x):
repc = int(x.shape[4])
m = keras.backend.repeat_elements(f, repc, axis = 4)
x = layers.multiply([x, m])
repx = int(x.shape[2])
repy = int(x.shape[3])
x = (keras.backend.sum(x, axis=[1, 2, 3], keepdims=True) / (keras.backend.sum(m, axis=[1, 2, 3], keepdims=True)))
x = keras.layers.Reshape(target_shape=(np.int32(x.shape[2]), np.int32(x.shape[3]), np.int32(x.shape[4])))(x)
x = keras.backend.repeat_elements(x, repx, axis = 1)
x = keras.backend.repeat_elements(x, repy, axis = 2)
return x
return Lambda(func)
def common_representation(x1, x2):
x = layers.concatenate([x1, x2], axis=3)
x = layers.Conv2D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(x)
x = layers.BatchNormalization(axis=3)(x)
x = layers.Activation('relu')(x)
return x
def GlobalAveragePooling2D_r2(f):
def func(x):
repc = int(x.shape[3])
m = keras.backend.repeat_elements(f, repc, axis = 3)
x = layers.multiply([x, m])
return x
return Lambda(func)
def my_model(encoder = 'VGG', input_size = (256, 256, 1), k_shot =1, learning_rate = 1e-4, learning_rate2 = 1e-4, no_weight = False):
# Get the encoder
if encoder == 'VGG':
encoder = EM.vgg_encoder(input_size = input_size, no_weight = no_weight)
else:
print('Encoder is not defined yet')
S_input = layers.Input(input_size)
Q_input = layers.Input(input_size)
## Encode support and query sample
s_encoded = encoder(S_input)
## Auxiliary task
x1 = layers.Conv2D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(s_encoded)
x1 = layers.BatchNormalization(axis=3)(x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(64, 3, padding = 'same', kernel_initializer = 'he_normal')(x1)
x1 = layers.Conv2D(3, 3, padding = 'same', kernel_initializer = 'he_normal')(x1)
xa = layers.Activation('sigmoid')(x1)
###################################### K-shot learning #####################################
## K shot
S_input2 = layers.Input((k_shot, input_size[0], input_size[1], input_size[2]))
Q_input2 = layers.Input(input_size)
S_mask2 = layers.Input((k_shot, int(input_size[0]/4), int(input_size[1]/4), 1))
kshot_encoder = keras.models.Sequential()
kshot_encoder.add(layers.TimeDistributed(encoder, input_shape=(k_shot, input_size[0], input_size[1], input_size[2])))
s_encoded = kshot_encoder(S_input2)
q_encoded = encoder(Q_input2)
s_encoded = layers.TimeDistributed(layers.Conv2D(128, (3, 3), activation='relu', padding='same'))(s_encoded)
q_encoded = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(q_encoded)
## Global Representation
s_encoded = GlobalAveragePooling2D_r(S_mask2)(s_encoded)
## Common Representation of Support and Query sample
Bi_rep = common_representation(s_encoded, q_encoded)
## Decode to query segment
x = layers.Conv2D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(Bi_rep)
x = layers.BatchNormalization(axis=3)(x)
x = layers.Activation('relu')(x)
x = layers.UpSampling2D(size=(2, 2))(x)
x = layers.Conv2D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(x)
x = layers.BatchNormalization(axis=3)(x)
x = layers.Activation('relu')(x)
x = layers.UpSampling2D(size=(2, 2))(x)
x = layers.Conv2D(128, 3, padding = 'same', kernel_initializer = 'he_normal')(x)
x = layers.BatchNormalization(axis=3)(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(x)
x = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(x)
final = layers.Conv2D(1, 1, activation = 'sigmoid')(x)
seg_model = Model(inputs=[S_input2, S_mask2, Q_input2], outputs = final)
seg_model.compile(optimizer = keras.optimizers.Adam(lr = learning_rate), loss = 'binary_crossentropy', metrics = ['accuracy'])
Surrogate_model = Model(inputs=[S_input], outputs = xa)
Surrogate_model.compile(loss="binary_crossentropy", optimizer=keras.optimizers.Adam(lr = learning_rate2))
return seg_model, Surrogate_model