-
Notifications
You must be signed in to change notification settings - Fork 3
/
mugstan_didemo_b32_hf.py
134 lines (124 loc) · 4.22 KB
/
mugstan_didemo_b32_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
_base_ = '../../_base_/default_runtime.py'
pretrained_model="openai/clip-vit-base-patch32"
model = dict(
type='CLIPSimilarity_split',
visual_encoder=dict(type='VITCLIPPretrained_STAN', depth=4, return_mean=False, gradient_checkpointing=True,
pretrained_model=pretrained_model),
text_encoder=dict(type='CLIPTextPretrained', all_proj=True, pretrained_model=pretrained_model),
to_float32=True,
frozen_layers=False,
data_preprocessor=dict(
type='MultiModalDataPreprocessor',
preprocessors=dict(
imgs=dict(
type='ActionDataPreprocessor',
mean=[122.771, 116.746, 104.093],
std=[68.500, 66.632, 70.323],
format_shape='NCHW'),
text=dict(type='ActionDataPreprocessor', to_float32=False))),
tau = 0.05,
adapter=dict(type="Mug_head", input_dim = 512, tau = 100))
load_from = None #Path to the post-pretrained ckpt
dataset_type = 'DidemoDataset'
data_root = '/Path/to/your/didemo/dataset'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='UniformSample', clip_len=64, num_clips=1),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='FormatShape', input_format='NCHW'),
dict(type='CLIPTokenize', length=77),
dict(type='PackActionInputs', collect_keys=('imgs', 'text'))
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='UniformSample', clip_len=64, num_clips=1, test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='CLIPTokenize', length=77),
dict(type='PackActionInputs', collect_keys=('imgs', 'text'))
]
test_pipeline = val_pipeline
train_dataloader = dict(
batch_size=8,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file='train.json',
data_root=data_root,
data_prefix=dict(video='video'),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file='test.json',
data_root=data_root,
data_prefix=dict(video='video'),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file='test.json',
data_root=data_root,
data_prefix=dict(video='video'),
pipeline=test_pipeline,
test_mode=True))
val_evaluator = dict(type='PostProc_RetrievalMetric')
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=20, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.05,
by_epoch=True,
begin=0,
end=4,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=17,
eta_min=0,
by_epoch=True,
begin=4,
end=20,
convert_to_iter_based=True)
]
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='AdamW',
lr=2e-06,
betas=(0.9, 0.98),
eps=1e-08,
weight_decay=0.01),
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.,
custom_keys={
'STAN': dict(lr_mult=10.),
}),
clip_grad=dict(max_norm=5, norm_type=2)
)
default_hooks = dict(checkpoint=dict(type='printBest_CheckpointHook', interval=-1, save_best='retrieval/R1', rule='greater'))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (16 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=128)