This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
train_net.py
79 lines (63 loc) · 2.4 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from ubteacher import add_ubteacher_config
from ubteacher.engine.trainer import UBTeacherTrainer, BaselineTrainer
# hacky way to register
from ubteacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN
from ubteacher.modeling.proposal_generator.rpn import PseudoLabRPN
from ubteacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab
import ubteacher.data.datasets.builtin
from ubteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_ubteacher_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if cfg.SEMISUPNET.Trainer == "ubteacher":
Trainer = UBTeacherTrainer
elif cfg.SEMISUPNET.Trainer == "baseline":
Trainer = BaselineTrainer
else:
raise ValueError("Trainer Name is not found.")
if args.eval_only:
if cfg.SEMISUPNET.Trainer == "ubteacher":
model = Trainer.build_model(cfg)
model_teacher = Trainer.build_model(cfg)
ensem_ts_model = EnsembleTSModel(model_teacher, model)
DetectionCheckpointer(
ensem_ts_model, save_dir=cfg.OUTPUT_DIR
).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume)
res = Trainer.test(cfg, ensem_ts_model.modelTeacher)
else:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)