Skip to content
This repository has been archived by the owner on Nov 1, 2024. It is now read-only.

Latest commit

 

History

History

omnivision

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Omnivision Trainer

Training pipeline supporting Omnivore and OmniMAE projects.

Installation

Omnivision requires Python 3.9. To install PyTorch 1.12 with CUDA 11.3 on Python 3.9 via conda, run the following instructions -

conda create --name ov python=3.9
conda activate ov
conda install pytorch=1.12 torchvision=0.13 cudatoolkit=11.3 -c pytorch

Install Omnivision in developer mode (where it runs code from your local checkout and picks up your changes) by running -

git clone https://github.com/facebookresearch/omnivore.git
cd omnivore
pip install -e ".[dev]"

Testing

Before running the tests, please ensure that you installed the necessary additional test dependencies.

Use the the following command to run the tests:

# run all tests
python -m unittest discover -v -s tests -t .
# run a specific test
python -m unittest tests.test_scheduler

Data preparation

All our dataloaders rely on .npy numpy array files for the meta data.

For IN1k, K400 and SSv2 datasets, please create two seperate .npy files for each split(train and val), such that there is one file consisting of a 1D arrays of image/video paths and another file consisting of the corresponding labels..

For SunRGBD, prepare three seperate .npy files for each split(train and val), such that there is one file consisting of a 1D array of image paths, one file consiting of a 1D array of corresponding depth image paths and the another file consisting of the corresponding labels.

Post that, update the config/experiments/dataset_catalog.yaml file with the paths to your newly created .npy files for each dataset.

For instance, a sample numpy file for images or depth images or videos would look like this,

array(['/path_to_sample_1.JPEG', # .mp4, .avi, .png any such extensions are supported based on the data type.
       '/path_to_sample_2.JPEG',
       '/path_to_sample_3.JPEG',
       '/path_to_sample_4.JPEG',
       '/path_to_sample_5.JPEG',
       dtype='<U75')

And a sample numpy file for labels would look like this,

array([86, 2, 34, 48, 51]) # consisting of integer labels.

Usage

All our given configs are designed to work on SLURM. We tested our configs with V100-32GB GPUS. For locally running the configs and for quick debuging, append the following lines to your job commands.

submitit.use_cluster=false launcher.gpus_per_node=1 launcher.num_nodes=1

Adittionally, update the SLURM config in config/experiments/base.yaml to reflect your enviroments partitions, constraints, etc.

Omnivore

For training a Swin model jointly on IN1k, K400 and SunRGBD, please follow the example below.

CONFIG_SAN=omnivore/swin_train_in1k_k400_sun_concat EXP_DIR=<YOUR EXPERIMENT LOG DIRECTORY> && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR

For evaluating the released model checkpoints, follow the SwinT In1k inference example,

CONFIG_SAN=omnivore/inference_in1k_pretrained EXP_DIR=<YOUR EXPERIMENT LOG DIRECTORY> && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR

OmniMAE

For omnivorous MAE-style pretraining on SSV2 and IN1k, please follow the example below,

CONFIG_SAN=omnimae/omnimae_vitbase_ssv2_in1k EXP_DIR=<YOUR EXPERIMENT LOG DIRECTORY> && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR

For finetuning the OmniMAE model, please follow these examples,

  • Finetuning on IN1k from the above generated pretraining checkpoints,
CONFIG_SAN=omnimae/omnimae_vitbase_ft_in1k EXP_DIR=<YOUR EXPERIMENT LOG DIRECTORY> && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR \
pretrained_omnimae_checkpoint_path=<PATH TO PRE-TRAINED OMNIMAE CHECKPOINT FROM ABOVE>
  • Finetuning on SSV2 from the above generated pretraining checkpoints,
CONFIG_SAN=omnimae/omnimae_vitbase_ft_ssv2 EXP_DIR=<YOUR EXPERIMENT LOG DIRECTORY> && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR \
pretrained_omnimae_checkpoint_path=<PATH TO PRE-TRAINED OMNIMAE CHECKPOINT FROM ABOVE>
  • Finetuning on IN1k from the OSS-released pretraining checkpoints,
CONFIG_SAN=omnimae/omnimae_vitbase_ft_from_oss_in1k EXP_DIR=/tmp/oss_rel_ft/ && \
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR \
pretrained_omnimae_checkpoint_path=<PATH TO PRE-TRAINED OMNIMAE CHECKPOINT FROM MODEL ZOO>h \
``

For evaluating the released model checkpoints, follow the VitB In1k inference example,

CONFIG_SAN=omnimae/inference_in1k_pretrained EXP_DIR= &&
python train_app_submitit.py +experiments=$CONFIG_SAN ++launcher.experiment_log_dir=$EXP_DIR


## Formatting
We use ufmt to handle formatting
```bash
ufmt --help
ufmt format

TODOs

  • Fix resumptions when using layer decay.
  • Support EMA model in trainer.