diff --git a/CHANGELOG.md b/CHANGELOG.md index 9a95ce0c7..9c353a208 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -6,6 +6,9 @@ - `copy()` method of a `Parameter` does not change the parameters's random state anymore (it used to reset it to `None` [#1048](https://github.com/facebookresearch/nevergrad/pull/1048) - `MultiobjectiveFunction` does not exist anymore [#1034](https://github.com/facebookresearch/nevergrad/pull/1034). +- `Choice` and `TransitionChoice` have some of their API changed for uniformization. In particular, `indices` is now an + `ng.p.Array` (and not an `np.ndarray`) which contains the selected indices (or index) of the `Choice`. The sampling is + performed by specific "layers" that are applied to `Data` parameters [#1065](https://github.com/facebookresearch/nevergrad/pull/1065). ### Important changes diff --git a/nevergrad/optimization/optimizerlib.py b/nevergrad/optimization/optimizerlib.py index f5e5f2c5b..5da25570f 100644 --- a/nevergrad/optimization/optimizerlib.py +++ b/nevergrad/optimization/optimizerlib.py @@ -4,6 +4,7 @@ # LICENSE file in the root directory of this source tree. import os import logging +import itertools from collections import deque import warnings import cma @@ -16,6 +17,8 @@ from nevergrad.parametrization import transforms from nevergrad.parametrization import discretization from nevergrad.parametrization import helpers as paramhelpers +from nevergrad.parametrization import _layering +from nevergrad.parametrization import _datalayers from . import base from . import mutations from .base import registry as registry @@ -1109,6 +1112,7 @@ def __init__( if non_deterministic_descriptor: for param in subparams: param.descriptors.deterministic_function = False + print(subparams, [x.dimension for x in subparams]) # synchronize random state and create optimizers self.optims: tp.List[base.Optimizer] = [] mono, multi = monovariate_optimizer, multivariate_optimizer @@ -2170,10 +2174,16 @@ def __init__( self.noise_from_instrumentation = self.has_noise and descr.deterministic_function self.fully_continuous = descr.continuous all_params = paramhelpers.flatten_parameter(self.parametrization) - choicetags = [p.BaseChoice.ChoiceTag.as_tag(x) for x in all_params.values()] - self.has_discrete_not_softmax = any(issubclass(ct.cls, p.TransitionChoice) for ct in choicetags) - self._has_discrete = any(issubclass(ct.cls, p.BaseChoice) for ct in choicetags) - self._arity = max(ct.arity for ct in choicetags) + # figure out if there is any discretization layers + int_layers = list( + itertools.chain.from_iterable([_layering.Int.filter_from(x) for x in all_params.values()]) + ) + int_layers = [x for x in int_layers if x.arity is not None] # only "Choice" instances for now + self.has_discrete_not_softmax = any( + not isinstance(lay, _datalayers.SoftmaxSampling) for lay in int_layers + ) + self._has_discrete = bool(int_layers) + self._arity: int = max((lay.arity for lay in int_layers), default=-1) # type: ignore if self.fully_continuous: self._arity = -1 self._optim: tp.Optional[base.Optimizer] = None diff --git a/nevergrad/optimization/test_callbacks.py b/nevergrad/optimization/test_callbacks.py index 178118795..180dce774 100644 --- a/nevergrad/optimization/test_callbacks.py +++ b/nevergrad/optimization/test_callbacks.py @@ -33,9 +33,9 @@ def test_log_parameters(tmp_path: Path) -> None: logs = logger.load_flattened() assert len(logs) == 32 assert isinstance(logs[-1]["1"], float) - assert len(logs[-1]) == 36 + assert len(logs[-1]) == 31 logs = logger.load_flattened(max_list_elements=2) - assert len(logs[-1]) == 28 + assert len(logs[-1]) == 27 # deletion logger = callbacks.ParametersLogger(filepath, append=False) assert not logger.load() diff --git a/nevergrad/optimization/test_optimizerlib.py b/nevergrad/optimization/test_optimizerlib.py index 83119f0af..723b938fd 100644 --- a/nevergrad/optimization/test_optimizerlib.py +++ b/nevergrad/optimization/test_optimizerlib.py @@ -611,7 +611,7 @@ def test_shiwa_dim1() -> None: ], # pylint: disable=too-many-arguments ) @testing.suppress_nevergrad_warnings() -def test_shiwa_selection( +def test_ngopt_selection( name: str, param: tp.Any, budget: int, num_workers: int, expected: str, caplog: tp.Any ) -> None: with caplog.at_level(logging.DEBUG, logger="nevergrad.optimization.optimizerlib"): @@ -640,8 +640,8 @@ def test_bo_ordering() -> None: ("NGOpt8", 3, 1, False, 100, ["OnePlusOne", "OnePlusOne"]), ("NGOpt8", 3, 1, False, 200, ["SQP", "SQP"]), ("NGOpt8", 3, 1, True, 1000, ["SQP", "monovariate", "monovariate"]), - (None, 3, 1, False, 1000, ["CMA", "CMA"]), - (None, 3, 20, False, 1000, ["MetaModel", "MetaModel"]), + (None, 3, 1, False, 1000, ["CMA", "OnePlusOne"]), + (None, 3, 20, False, 1000, ["MetaModel", "OnePlusOne"]), ], ) def test_ngo_split_optimizer( @@ -664,7 +664,7 @@ def test_ngo_split_optimizer( if fake_learning else ng.p.Choice(["const", ng.p.Array(init=list(range(dimension)))]) ) - opt: tp.Union[base.ConfiguredOptimizer, tp.Type[base.Optimizer]] = ( + opt: base.OptCls = ( xpvariants.MetaNGOpt10 if name is None else (optlib.ConfSplitOptimizer(multivariate_optimizer=optlib.registry[name])) diff --git a/nevergrad/parametrization/_datalayers.py b/nevergrad/parametrization/_datalayers.py index 2dcdb6629..d1069da83 100644 --- a/nevergrad/parametrization/_datalayers.py +++ b/nevergrad/parametrization/_datalayers.py @@ -9,8 +9,10 @@ import nevergrad.common.typing as tp from nevergrad.common import errors from . import _layering +from ._layering import Int as Int from .data import Data from .core import Parameter +from . import discretization from . import transforms as trans from . import utils @@ -20,7 +22,7 @@ BL = tp.TypeVar("BL", bound="BoundLayer") -class Operation(_layering.Layered): +class Operation(_layering.Layered, _layering.Filterable): _LAYER_LEVEL = _layering.Level.OPERATION _LEGACY = False @@ -30,10 +32,6 @@ def __init__(self, *args: tp.Any, **kwargs: tp.Any) -> None: if any(isinstance(x, Parameter) for x in args + tuple(kwargs.values())): raise errors.NevergradTypeError("Operation with Parameter instances are not supported") - @classmethod - def filter_from(cls: tp.Type[Op], parameter: Parameter) -> tp.List[Op]: - return [x for x in parameter._layers if isinstance(x, cls)] - class BoundLayer(Operation): @@ -116,7 +114,7 @@ def _layered_sample(self) -> "Data": shape = super()._layered_get_value().shape child = root.spawn_child() # send new val to the layer under this one for the child - new_val = root.random_state.uniform(size=shape) + new_val = self.random_state.uniform(size=shape) child._layers[self._layer_index].set_normalized_value(new_val) # type: ignore return child @@ -267,3 +265,30 @@ def _layered_get_value(self) -> np.ndarray: def _layered_set_value(self, value: np.ndarray) -> None: super()._layered_set_value(self._transform.backward(value)) + + +class SoftmaxSampling(Int): + def __init__(self, arity: int, deterministic: bool = False) -> None: + super().__init__() + self.arity = arity + self.deterministic = deterministic + + def _layered_get_value(self) -> tp.Any: + if self._cache is None: + value = _layering.Layered._layered_get_value(self) + if value.ndim != 2 or value.shape[1] != self.arity: + raise ValueError(f"Dimension 1 should be the arity {self.arity}") + encoder = discretization.Encoder(value, rng=self.random_state) + self._cache = encoder.encode(deterministic=self.deterministic) + return self._cache + + def _layered_set_value(self, value: tp.Any) -> tp.Any: + if not isinstance(value, np.ndarray) and not value.dtype == int: + raise TypeError("Expected an integer array, got {value}") + if self.arity is None: + raise RuntimeError("Arity is not initialized") + self._cache = value + out = np.zeros((value.size, self.arity), dtype=float) + coeff = discretization.weight_for_reset(self.arity) + out[np.arange(value.size, dtype=int), value] = coeff + super()._layered_set_value(out) diff --git a/nevergrad/parametrization/_layering.py b/nevergrad/parametrization/_layering.py index 4cdbee8e7..8a68d4ae2 100644 --- a/nevergrad/parametrization/_layering.py +++ b/nevergrad/parametrization/_layering.py @@ -12,6 +12,7 @@ L = tp.TypeVar("L", bound="Layered") +F = tp.TypeVar("F", bound="Filterable") X = tp.TypeVar("X") @@ -22,8 +23,9 @@ class Level(Enum): OPERATION = 10 # final - ARRAY_CASTING = 800 - INTEGER_CASTING = 900 + INTEGER_CASTING = 800 + ARRAY_CASTING = 900 + SCALAR_CASTING = 950 CONSTRAINT = 1000 # must be the last layer @@ -34,7 +36,7 @@ class Layered: Layers can be added and will be ordered depending on their level """ - _LAYER_LEVEL = Level.OPERATION + _LAYER_LEVEL = Level.OPERATION # this provides an order for the layers def __init__(self) -> None: self._layers = [self] @@ -92,6 +94,10 @@ def _layered_del_value(self) -> None: def _layered_sample(self) -> "Layered": return self._call_deeper("_layered_sample") # type: ignore + @property + def random_state(self) -> np.random.RandomState: + return self._layers[0].random_state # use the root random state + def copy(self: L) -> L: """Creates a new unattached layer with the same behavior""" new = copy.copy(self) @@ -177,7 +183,7 @@ def __delete__(self, obj: Layered) -> None: class _ScalarCasting(Layered): """Cast Array as a scalar""" - _LAYER_LEVEL = Level.INTEGER_CASTING + _LAYER_LEVEL = Level.SCALAR_CASTING def _layered_get_value(self) -> float: out = super()._layered_get_value() # pulls from previous layer @@ -204,10 +210,32 @@ def _layered_set_value(self, value: tp.ArrayLike) -> None: super()._layered_set_value(np.asarray(value)) -class Int(Layered): +class Filterable: + @classmethod + def filter_from(cls: tp.Type[F], parameter: Layered) -> tp.List[F]: + return [x for x in parameter._layers if isinstance(x, cls)] # type: ignore + + +class Int(Layered, Filterable): """Cast Data as integer (or integer array)""" - _LAYER_LEVEL = Level.OPERATION + _LAYER_LEVEL = Level.INTEGER_CASTING + + def __init__(self) -> None: + super().__init__() + self.arity: tp.Optional[int] = None + self.deterministic = True + self._cache: tp.Optional[np.ndarray] = None def _layered_get_value(self) -> np.ndarray: - return np.round(super()._layered_get_value()).astype(int) # type: ignore + bounds = self._layers[0].bounds # type: ignore + out = np.round(super()._layered_get_value()).astype(int) + # make sure rounding does not reach beyond the bounds + if bounds[0] is not None: + out = np.maximum(int(np.round(bounds[0] + 0.5)), out) + if bounds[1] is not None: + out = np.minimum(int(np.round(bounds[1] - 0.5)), out) + return out # type: ignore + + def _layered_del_value(self) -> None: + self._cache = None # clear cache! diff --git a/nevergrad/parametrization/choice.py b/nevergrad/parametrization/choice.py index dd400b281..00665c3d0 100644 --- a/nevergrad/parametrization/choice.py +++ b/nevergrad/parametrization/choice.py @@ -2,13 +2,12 @@ # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. -import warnings import numpy as np import nevergrad.common.typing as tp from . import discretization -from . import utils from . import core from . import container +from . import _datalayers from .data import Array # weird pylint issue on "Descriptors" @@ -19,25 +18,7 @@ T = tp.TypeVar("T", bound="TransitionChoice") -class ChoiceTag(tp.NamedTuple): - cls: tp.Type[core.Parameter] - arity: int - - @classmethod - def as_tag(cls, param: core.Parameter) -> "ChoiceTag": - # arrays inherit tags to identify them as bound to a choice - if cls in param.heritage: # type: ignore - output = param.heritage[cls] # type: ignore - assert isinstance(output, cls) - return output - arity = len(param.choices) if isinstance(param, BaseChoice) else -1 - return cls(type(param), arity) - - class BaseChoice(container.Container): - - ChoiceTag = ChoiceTag - def __init__( self, *, choices: tp.Iterable[tp.Any], repetitions: tp.Optional[int] = None, **kwargs: tp.Any ) -> None: @@ -48,14 +29,6 @@ def __init__( raise ValueError("{self._class__.__name__} received an empty list of options.") super().__init__(choices=container.Tuple(*lchoices), **kwargs) - def _compute_descriptors(self) -> utils.Descriptors: - deterministic = getattr(self, "_deterministic", True) - ordered = not hasattr(self, "_deterministic") - internal = utils.Descriptors( - deterministic=deterministic, continuous=not deterministic, ordered=ordered - ) - return self.choices.descriptors & internal - def __len__(self) -> int: """Number of choices""" return len(self.choices) @@ -71,13 +44,14 @@ def _get_parameters_str(self) -> str: @property def index(self) -> int: # delayed choice """Index of the chosen option""" - assert self.indices.size == 1 - return int(self.indices[0]) + inds = self.indices.value + assert inds.size == 1 + return int(inds[0]) @property - def indices(self) -> np.ndarray: - """Indices of the chosen options""" - raise NotImplementedError # TODO remove index? + def indices(self) -> Array: + """Array of indices of the chosen option""" + return self["indices"] # type: ignore @property def choices(self) -> container.Tuple: @@ -87,9 +61,9 @@ def choices(self) -> container.Tuple: def _layered_get_value(self) -> tp.Any: if self._repetitions is None: return core.as_parameter(self.choices[self.index]).value - return tuple(core.as_parameter(self.choices[ind]).value for ind in self.indices) + return tuple(core.as_parameter(self.choices[ind]).value for ind in self.indices.value) - def _layered_set_value(self, value: tp.List[tp.Any]) -> np.ndarray: + def _layered_set_value(self, value: tp.List[tp.Any]) -> None: """Must be adapted to each class This handles a list of values, not just one """ # TODO this is currenlty very messy, may need some improvement @@ -107,11 +81,11 @@ def _layered_set_value(self, value: tp.List[tp.Any]) -> np.ndarray: pass if indices[i] == -1: raise ValueError(f"Could not figure out where to put value {value}") - return indices + self.indices.value = indices def get_value_hash(self) -> tp.Hashable: hashes: tp.List[tp.Hashable] = [] - for ind in self.indices: + for ind in self.indices.value: c = self.choices[int(ind)] const = isinstance(c, core.Constant) or not isinstance(c, core.Parameter) hashes.append(int(ind) if const else (int(ind), c.get_value_hash())) @@ -161,12 +135,13 @@ def __init__( ) -> None: lchoices = list(choices) rep = 1 if repetitions is None else repetitions + indices = Array(shape=(rep, len(lchoices)), mutable_sigma=False) + indices.add_layer(_datalayers.SoftmaxSampling(len(lchoices), deterministic=deterministic)) super().__init__( choices=lchoices, repetitions=repetitions, - weights=Array(shape=(rep, len(lchoices)), mutable_sigma=False), + indices=indices, ) - self.weights.heritage[BaseChoice.ChoiceTag] = BaseChoice.ChoiceTag(self.__class__, len(lchoices)) self._deterministic = deterministic self._indices: tp.Optional[np.ndarray] = None @@ -178,54 +153,22 @@ def _get_name(self) -> str: name = cls + "{det}" + name[len(cls) :] return name - @property - def indices(self) -> np.ndarray: # delayed choice - """Index of the chosen option""" - if self._indices is None: - self._draw(deterministic=self._deterministic) - assert self._indices is not None - return self._indices - - @property - def weights(self) -> Array: - """The weights used to draw the value""" - return self["weights"] # type: ignore - - @property - def probabilities(self) -> np.ndarray: - """The probabilities used to draw the value""" - exp = np.exp(self.weights.value) - return exp / np.sum(exp) # type: ignore - - def _layered_set_value(self, value: tp.Any) -> np.ndarray: - indices = super()._layered_set_value(value) - self._indices = indices - # force new probabilities - arity = self.weights.value.shape[1] - coeff = discretization.weight_for_reset(arity) - self.weights._value.fill(0.0) # reset since there is no reference - out = np.array(self.weights._value, copy=True) # just a zero matrix - out[np.arange(indices.size), indices] = coeff - self.weights.set_standardized_data(out.ravel(), deterministic=True) - return indices - - def _draw(self, deterministic: bool = True) -> None: - encoder = discretization.Encoder(self.weights.value, rng=self.random_state) - self._indices = encoder.encode(deterministic=deterministic or self._deterministic) - def _internal_set_standardized_data( self: C, data: np.ndarray, reference: C, deterministic: bool = False ) -> None: + softmax = self.indices._layers[-2] + assert isinstance(softmax, _datalayers.SoftmaxSampling) + softmax.deterministic = deterministic or self._deterministic super()._internal_set_standardized_data(data, reference=reference, deterministic=deterministic) - self._draw(deterministic=deterministic) + # pylint: disable=pointless-statement + self.indices # make sure to draw + softmax.deterministic = self._deterministic def mutate(self) -> None: # force random_state sync self.random_state # pylint: disable=pointless-statement - self.weights.mutate() - self._draw(deterministic=self._deterministic) - indices = set(self.indices) - for ind in indices: + self.indices.mutate() + for ind in self.indices.value: self.choices[ind].mutate() @@ -259,47 +202,24 @@ def __init__( repetitions: tp.Optional[int] = None, ) -> None: choices = list(choices) - positions = Array(init=len(choices) / 2.0 * np.ones((repetitions if repetitions is not None else 1,))) - positions.set_bounds(0, len(choices), method="gaussian") - positions.heritage[BaseChoice.ChoiceTag] = BaseChoice.ChoiceTag(self.__class__, len(choices)) + indices = Array(init=len(choices) / 2.0 * np.ones((repetitions if repetitions is not None else 1,))) + indices.set_bounds(0, len(choices), method="gaussian") + indices = indices - 0.5 + intcasting = _datalayers.Int() + intcasting.arity = len(choices) + indices.add_layer(intcasting) super().__init__( choices=choices, repetitions=repetitions, - positions=positions, + indices=indices, transitions=transitions if isinstance(transitions, Array) else np.array(transitions, copy=False), ) assert self.transitions.value.ndim == 1 - @property - def indices(self) -> np.ndarray: - return np.minimum(len(self) - 1e-9, self.positions.value).astype(int) # type: ignore - - def _layered_set_value(self, value: tp.Any) -> np.ndarray: - indices = super()._layered_set_value(value) # only one value for this class - self._set_index(indices) - return indices - - def _set_index(self, indices: np.ndarray) -> None: - self.positions.value = indices + 0.5 - @property def transitions(self) -> Array: - """The weights used to draw the step to the next value""" return self["transitions"] # type: ignore - @property - def position(self) -> Array: - """The continuous version of the index (used when working with standardized space)""" - warnings.warn( - "position is replaced by positions in order to allow for repetitions", DeprecationWarning - ) - return self.positions - - @property - def positions(self) -> Array: - """The continuous version of the index (used when working with standardized space)""" - return self["positions"] # type: ignore - def mutate(self) -> None: # force random_state sync self.random_state # pylint: disable=pointless-statement @@ -307,12 +227,12 @@ def mutate(self) -> None: transitions.mutate() rep = 1 if self._repetitions is None else self._repetitions # - enc = discretization.Encoder(np.ones((rep, 1)) * np.log(self.transitions.value), self.random_state) + enc = discretization.Encoder(np.ones((rep, 1)) * np.log(self["transitions"].value), self.random_state) moves = enc.encode() signs = self.random_state.choice([-1, 1], size=rep) - new_index = np.clip(self.indices + signs * moves, 0, len(self) - 1) - self._set_index(new_index.ravel()) + new_index = np.clip(self.indices.value + signs * moves, 0, len(self) - 1) + self.indices.value = new_index # mutate corresponding parameter - indices = set(self.indices) + indices = set(self.indices.value) for ind in indices: self.choices[ind].mutate() diff --git a/nevergrad/parametrization/data.py b/nevergrad/parametrization/data.py index 70f62d489..f859f27e1 100644 --- a/nevergrad/parametrization/data.py +++ b/nevergrad/parametrization/data.py @@ -143,7 +143,15 @@ def dimension(self) -> int: return int(np.prod(self._value.shape)) def _compute_descriptors(self) -> utils.Descriptors: - return utils.Descriptors(continuous=not self.integer) + from . import _datalayers + + intlayers = _layering.Int.filter_from(self) + deterministic = all(lay.deterministic for lay in intlayers) + return utils.Descriptors( + deterministic=deterministic, + continuous=not (deterministic and bool(intlayers)), + ordered=not any(isinstance(lay, _datalayers.SoftmaxSampling) for lay in intlayers), + ) def _get_name(self) -> str: cls = self.__class__.__name__ diff --git a/nevergrad/parametrization/mutation.py b/nevergrad/parametrization/mutation.py index ae9308d23..3e583ef4a 100644 --- a/nevergrad/parametrization/mutation.py +++ b/nevergrad/parametrization/mutation.py @@ -271,6 +271,6 @@ def _apply_array(self, arrays: tp.Sequence[np.ndarray]) -> np.ndarray: assert data.shape == self.shape shift = self.shift.value # update shift arrray - shifts = self.shift.weights.value - self.shift.weights.value = np.roll(shifts, shift) # update probas + shifts = self.shift.indices._value + self.shift.indices._value = np.roll(shifts, shift) # update probas return np.roll(data, shift, axis=self.axis) # type: ignore diff --git a/nevergrad/parametrization/test_layers.py b/nevergrad/parametrization/test_layers.py index b6b582c0d..e0c5f7e0e 100644 --- a/nevergrad/parametrization/test_layers.py +++ b/nevergrad/parametrization/test_layers.py @@ -90,4 +90,34 @@ def test_clipping_standardized_data() -> None: def test_bound_estimation() -> None: param = (_datalayers.Bound(-10, 10)(ng.p.Scalar()) + 3) * 5 - assert param.bounds == (-35, 65) + assert param.bounds == (-35, 65) # type: ignore + + +def test_softmax_layer() -> None: + param = ng.p.Array(shape=(4, 3)) + param.random_state.seed(12) + param.add_layer(_datalayers.SoftmaxSampling(arity=3)) + assert param.value.tolist() == [0, 2, 0, 1] + assert param.value.tolist() == [0, 2, 0, 1], "Different indices at the second call" + del param.value + assert param.value.tolist() == [0, 2, 2, 0], "Same indices after resampling" + param.value = [0, 1, 2, 0] # type: ignore + assert param.value.tolist() == [0, 1, 2, 0] + expected = np.zeros((4, 3)) + expected[[0, 1, 2, 3], [0, 1, 2, 0]] = 0.6931 + np.testing.assert_array_almost_equal(param._value, expected, decimal=4) + + +def test_deterministic_softmax_layer() -> None: + param = ng.p.Array(shape=(1, 100)) + param.add_layer(_datalayers.SoftmaxSampling(arity=100, deterministic=True)) + param._value[0, 12] = 1 + assert param.value.tolist() == [12] + + +def test_bounded_int_casting() -> None: + param = _datalayers.Bound(-10.9, 10.9, method="clipping")(ng.p.Scalar()) + param.add_layer(_datalayers.Int()) + for move, val in [(2.4, 2), (0.2, 3), (42, 10), (-42, -10)]: + param.set_standardized_data([move]) + assert param.value == val, f"Wrong value after move {move}" diff --git a/nevergrad/parametrization/test_mutation.py b/nevergrad/parametrization/test_mutation.py index 65ee07ddd..209fbe726 100644 --- a/nevergrad/parametrization/test_mutation.py +++ b/nevergrad/parametrization/test_mutation.py @@ -84,7 +84,7 @@ def test_tuned_translation() -> None: expected = np.array([3, 0, 1, 2])[:, None].dot(np.ones((1, 2))) np.testing.assert_array_equal(out, expected) roll.mutate() - assert np.sum(np.abs(roll.shift.weights.value)) > 0 + assert np.sum(np.abs(roll.shift.indices._value)) > 0 @testing.parametrized( diff --git a/nevergrad/parametrization/test_parameter.py b/nevergrad/parametrization/test_parameter.py index 9f7295b8d..02aaa3f1d 100644 --- a/nevergrad/parametrization/test_parameter.py +++ b/nevergrad/parametrization/test_parameter.py @@ -181,14 +181,14 @@ def check_parameter_freezable(param: par.Parameter) -> None: par.Instrumentation(par.Array(shape=(2,)), string="blublu", truc="plop"), "Instrumentation(Tuple(Array{(2,)}),Dict(string=blublu,truc=plop))", ), - (par.Choice([1, 12]), "Choice(choices=Tuple(1,12),weights=Array{(1,2)})"), + (par.Choice([1, 12]), "Choice(choices=Tuple(1,12),indices=Array{(1,2),SoftmaxSampling})"), ( par.Choice([1, 12], deterministic=True), - "Choice{det}(choices=Tuple(1,12),weights=Array{(1,2)})", + "Choice{det}(choices=Tuple(1,12),indices=Array{(1,2),SoftmaxSampling})", ), ( par.TransitionChoice([1, 12]), - "TransitionChoice(choices=Tuple(1,12),positions=Array{Cd(0,2)},transitions=[1. 1.])", + "TransitionChoice(choices=Tuple(1,12),indices=Array{Cd(0,2),Add,Int},transitions=[1. 1.])", ), ], ) @@ -360,9 +360,7 @@ def test_choice_repetitions() -> None: assert len(choice) == 4 assert choice.value == (0, 2) choice.value = (3, 1) - expected = np.zeros((2, 4)) - expected[[0, 1], [3, 1]] = 0.588 - np.testing.assert_almost_equal(choice.weights.value, expected, decimal=3) + assert choice.indices.value.tolist() == [3, 1] choice.mutate() @@ -372,7 +370,7 @@ def test_transition_choice_repetitions() -> None: assert len(choice) == 4 assert choice.value == (2, 2) choice.value = (3, 1) - np.testing.assert_almost_equal(choice.positions.value, [3.5, 1.5], decimal=3) + np.testing.assert_almost_equal(choice.indices.value, [3, 1], decimal=3) choice.mutate() assert choice.value == (3, 0) diff --git a/nevergrad/parametrization/test_parameters_legacy.py b/nevergrad/parametrization/test_parameters_legacy.py index 8aac648cd..54970ea06 100644 --- a/nevergrad/parametrization/test_parameters_legacy.py +++ b/nevergrad/parametrization/test_parameters_legacy.py @@ -10,7 +10,6 @@ import typing as tp import numpy as np import pytest -from nevergrad.common import testing from . import parameter as p @@ -32,7 +31,7 @@ def test_instrumentation() -> None: data = instru2.spawn_child(new_value=((4, 3), dict(a=0, b=3))).get_standardized_data(reference=instru2) np.testing.assert_array_almost_equal(data, [4, -1.1503, 0, 0, 0, 0.5878], decimal=4) args, kwargs = instru.spawn_child().set_standardized_data(data, deterministic=True).value - testing.printed_assert_equal((args, kwargs), ((4.0, 3), {"a": 0, "b": 3})) + assert (args, kwargs) == ((4.0, 3), {"a": 0, "b": 3}) assert "3),Dict(a=TransitionChoice(choices=Tuple(0,1,2,3)," in repr( instru ), f"Erroneous representation {instru}" @@ -50,19 +49,19 @@ def test_instrumentation() -> None: # instru2 = mvar.Instrumentation(*instru.args, **instru.kwargs) # TODO: OUCH SILENT FAIL instru2.copy() data = np.random.normal(0, 1, size=6) - testing.printed_assert_equal( - instru2.spawn_child().set_standardized_data(data, deterministic=True).value, - instru.spawn_child().set_standardized_data(data, deterministic=True).value, + assert ( + instru2.spawn_child().set_standardized_data(data, deterministic=True).value + == instru.spawn_child().set_standardized_data(data, deterministic=True).value ) # check naming instru_str = ( "Instrumentation(Tuple(Scalar[sigma=Log{exp=2.0}],3)," "Dict(a=TransitionChoice(choices=Tuple(0,1,2,3)," - "positions=Array{Cd(0,4)},transitions=[1. 1.])," - "b=Choice(choices=Tuple(0,1,2,3),weights=Array{(1,4)})))" + "indices=Array{Cd(0,4),Add,Int},transitions=[1. 1.])," + "b=Choice(choices=Tuple(0,1,2,3),indices=Array{(1,4),SoftmaxSampling})))" ) - testing.printed_assert_equal(instru.name, instru_str) - testing.printed_assert_equal("blublu", instru.set_name("blublu").name) + assert instru.name == instru_str + assert instru.set_name("blublu").name == "blublu" def _false(value: tp.Any) -> bool: # pylint: disable=unused-argument diff --git a/nevergrad/parametrization/test_utils.py b/nevergrad/parametrization/test_utils.py index 1725da293..0f1c39b3c 100644 --- a/nevergrad/parametrization/test_utils.py +++ b/nevergrad/parametrization/test_utils.py @@ -49,17 +49,17 @@ def test_command_function() -> None: v_tuple_=(True, p.Tuple(p.Scalar(), p.Array(shape=(2,))), ("0", "1")), instrumentation=(False, p.Instrumentation(p.Scalar(), y=p.Scalar()), ("", "0", "y")), instrumentation_v=(True, p.Instrumentation(p.Scalar(), y=p.Scalar()), ("0", "y")), - choice=(False, p.Choice([p.Scalar(), "blublu"]), ("", "choices", "choices.0", "choices.1", "weights")), - v_choice=(True, p.Choice([p.Scalar(), "blublu"]), ("", "choices.0", "weights")), + choice=(False, p.Choice([p.Scalar(), "blublu"]), ("", "choices", "choices.0", "choices.1", "indices")), + v_choice=(True, p.Choice([p.Scalar(), "blublu"]), ("", "choices.0", "indices")), tuple_choice_dict=( False, p.Tuple(p.Choice([p.Dict(x=p.Scalar(), y=12), p.Scalar()])), - ("", "0", "0.choices", "0.choices.0", "0.choices.0.x", "0.choices.0.y", "0.choices.1", "0.weights"), + ("", "0", "0.choices", "0.choices.0", "0.choices.0.x", "0.choices.0.y", "0.choices.1", "0.indices"), ), v_tuple_choice_dict=( True, p.Tuple(p.Choice([p.Dict(x=p.Scalar(), y=12), p.Scalar()])), - ("0", "0.choices.0.x", "0.choices.1", "0.weights"), + ("0", "0.choices.0.x", "0.choices.1", "0.indices"), ), ) def test_flatten_parameter(no_container: bool, param: p.Parameter, keys: tp.Iterable[str]) -> None: @@ -72,7 +72,7 @@ def test_flatten_parameter(no_container: bool, param: p.Parameter, keys: tp.Iter # that everything works as intended v_tuple_choice_dict=( p.Tuple(p.Choice([p.Dict(x=p.Scalar(), y=12), p.Scalar()])), - ["0.choices.0.x", "0.choices.1", "0.weights"], + ["0.choices.0.x", "0.choices.1", "0.indices"], ), multiple=( p.Instrumentation( @@ -81,7 +81,7 @@ def test_flatten_parameter(no_container: bool, param: p.Parameter, keys: tp.Iter z=p.Array(init=[12, 12]).set_bounds(lower=12, upper=15), y=p.Array(init=[1, 1]), ), - ["0", "x.choices.1", "x.weights", "y", "z"], + ["0", "x.choices.1", "x.indices", "y", "z"], ), ) def test_split_as_data_parameters(param: p.Parameter, names: tp.List[str]) -> None: @@ -90,15 +90,15 @@ def test_split_as_data_parameters(param: p.Parameter, names: tp.List[str]) -> No @testing.parametrized( - order_0=(0, ("", "choices.0.x", "choices.1", "weights")), - order_1=(1, ("", "choices.0.x", "choices.1", "weights", "choices.1#sigma", "choices.0.x#sigma")), + order_0=(0, ("", "choices.0.x", "choices.1", "indices")), + order_1=(1, ("", "choices.0.x", "choices.1", "indices", "choices.1#sigma", "choices.0.x#sigma")), order_2=( 2, ( "", "choices.0.x", "choices.1", - "weights", + "indices", "choices.1#sigma", "choices.0.x#sigma", "choices.1#sigma#sigma", @@ -110,7 +110,7 @@ def test_split_as_data_parameters(param: p.Parameter, names: tp.List[str]) -> No "", "choices.0.x", "choices.1", - "weights", + "indices", "choices.1#sigma", "choices.0.x#sigma", "choices.1#sigma#sigma", @@ -128,19 +128,6 @@ def test_descriptors() -> None: assert repr(desc) == "Descriptors(ordered=False)" -@testing.parametrized( - dict_param=(p.Dict(x=p.Scalar(), y=12), p.Dict, -1), - scalar=(p.Scalar(), p.Scalar, -1), - array=(p.Array(shape=(3, 2)), p.Array, -1), - choice=(p.Choice([1, 2, 3]), p.Choice, 3), - choice_weight=(p.Choice([1, 2, 3]).weights, p.Choice, 3), -) -def test_parameter_as_choice_tag(param: p.Parameter, cls: tp.Type[p.Parameter], arity: int) -> None: - tag = p.BaseChoice.ChoiceTag.as_tag(param) - assert tag.cls == cls - assert tag.arity == arity - - @testing.parametrized( true=(True, 0.0), false=(False, 1.0),