From 2032c5abab634c6ffacfbb90685e21921012d94c Mon Sep 17 00:00:00 2001 From: Peizhao Zhang Date: Thu, 28 Feb 2019 02:03:49 -0800 Subject: [PATCH] Added a unit test for detectors. --- tests/test_detectors.py | 143 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 143 insertions(+) create mode 100644 tests/test_detectors.py diff --git a/tests/test_detectors.py b/tests/test_detectors.py new file mode 100644 index 000000000..5f9f7bfa2 --- /dev/null +++ b/tests/test_detectors.py @@ -0,0 +1,143 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. + +import unittest +import glob +import os +import copy +import torch +from maskrcnn_benchmark.modeling.detector import build_detection_model +from maskrcnn_benchmark.structures.image_list import to_image_list +import utils + + +CONFIG_FILES = [ + # bbox + "e2e_faster_rcnn_R_50_C4_1x.yaml", + "e2e_faster_rcnn_R_50_FPN_1x.yaml", + "e2e_faster_rcnn_fbnet.yaml", + + # mask + "e2e_mask_rcnn_R_50_C4_1x.yaml", + "e2e_mask_rcnn_R_50_FPN_1x.yaml", + "e2e_mask_rcnn_fbnet.yaml", + + # keypoints + # TODO: fail to run for random model due to empty head input + # "e2e_keypoint_rcnn_R_50_FPN_1x.yaml", + + # gn + "gn_baselines/e2e_faster_rcnn_R_50_FPN_1x_gn.yaml", + # TODO: fail to run for random model due to empty head input + # "gn_baselines/e2e_mask_rcnn_R_50_FPN_Xconv1fc_1x_gn.yaml", + + # retinanet + "retinanet/retinanet_R-50-FPN_1x.yaml", + + # rpn only + "rpn_R_50_C4_1x.yaml", + "rpn_R_50_FPN_1x.yaml", +] + +EXCLUDED_FOLDERS = [ + "caffe2", + "quick_schedules", + "pascal_voc", + "cityscapes", +] + + +TEST_CUDA = torch.cuda.is_available() + + +def get_config_files(file_list, exclude_folders): + cfg_root_path = utils.get_config_root_path() + if file_list is not None: + files = [os.path.join(cfg_root_path, x) for x in file_list] + else: + files = glob.glob( + os.path.join(cfg_root_path, "./**/*.yaml"), recursive=True) + + def _contains(path, exclude_dirs): + return any(x in path for x in exclude_dirs) + + if exclude_folders is not None: + files = [x for x in files if not _contains(x, exclude_folders)] + + return files + + +def create_model(cfg, device): + cfg = copy.deepcopy(cfg) + cfg.freeze() + model = build_detection_model(cfg) + model = model.to(device) + return model + + +def create_random_input(cfg, device): + ret = [] + for x in cfg.INPUT.MIN_SIZE_TRAIN: + ret.append(torch.rand(3, x, int(x * 1.2))) + ret = to_image_list(ret, cfg.DATALOADER.SIZE_DIVISIBILITY) + ret = ret.to(device) + return ret + + +def _test_build_detectors(self, device): + ''' Make sure models build ''' + + cfg_files = get_config_files(None, EXCLUDED_FOLDERS) + self.assertGreater(len(cfg_files), 0) + + for cfg_file in cfg_files: + with self.subTest(cfg_file=cfg_file): + print('Testing {}...'.format(cfg_file)) + cfg = utils.load_config_from_file(cfg_file) + create_model(cfg, device) + + +def _test_run_selected_detectors(self, cfg_files, device): + ''' Make sure models build and run ''' + self.assertGreater(len(cfg_files), 0) + + for cfg_file in cfg_files: + with self.subTest(cfg_file=cfg_file): + print('Testing {}...'.format(cfg_file)) + cfg = utils.load_config_from_file(cfg_file) + cfg.MODEL.RPN.POST_NMS_TOP_N_TEST = 10 + cfg.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 10 + model = create_model(cfg, device) + inputs = create_random_input(cfg, device) + model.eval() + output = model(inputs) + self.assertEqual(len(output), len(inputs.image_sizes)) + + +class TestDetectors(unittest.TestCase): + def test_build_detectors(self): + ''' Make sure models build ''' + _test_build_detectors(self, "cpu") + + @unittest.skipIf(not TEST_CUDA, "no CUDA detected") + def test_build_detectors_cuda(self): + ''' Make sure models build on gpu''' + _test_build_detectors(self, "cuda") + + def test_run_selected_detectors(self): + ''' Make sure models build and run ''' + # run on selected models + cfg_files = get_config_files(CONFIG_FILES, None) + # cfg_files = get_config_files(None, EXCLUDED_FOLDERS) + _test_run_selected_detectors(self, cfg_files, "cpu") + + @unittest.skipIf(not TEST_CUDA, "no CUDA detected") + def test_run_selected_detectors_cuda(self): + ''' Make sure models build and run on cuda ''' + # run on selected models + cfg_files = get_config_files(CONFIG_FILES, None) + # cfg_files = get_config_files(None, EXCLUDED_FOLDERS) + _test_run_selected_detectors(self, cfg_files, "cuda") + + +if __name__ == "__main__": + unittest.main()