This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
c2_model_loading.py
206 lines (167 loc) · 8.14 KB
/
c2_model_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import logging
import pickle
from collections import OrderedDict
import torch
from maskrcnn_benchmark.utils.model_serialization import load_state_dict
from maskrcnn_benchmark.utils.registry import Registry
def _rename_basic_resnet_weights(layer_keys):
layer_keys = [k.replace("_", ".") for k in layer_keys]
layer_keys = [k.replace(".w", ".weight") for k in layer_keys]
layer_keys = [k.replace(".bn", "_bn") for k in layer_keys]
layer_keys = [k.replace(".b", ".bias") for k in layer_keys]
layer_keys = [k.replace("_bn.s", "_bn.scale") for k in layer_keys]
layer_keys = [k.replace(".biasranch", ".branch") for k in layer_keys]
layer_keys = [k.replace("bbox.pred", "bbox_pred") for k in layer_keys]
layer_keys = [k.replace("cls.score", "cls_score") for k in layer_keys]
layer_keys = [k.replace("res.conv1_", "conv1_") for k in layer_keys]
# RPN / Faster RCNN
layer_keys = [k.replace(".biasbox", ".bbox") for k in layer_keys]
layer_keys = [k.replace("conv.rpn", "rpn.conv") for k in layer_keys]
layer_keys = [k.replace("rpn.bbox.pred", "rpn.bbox_pred") for k in layer_keys]
layer_keys = [k.replace("rpn.cls.logits", "rpn.cls_logits") for k in layer_keys]
# Affine-Channel -> BatchNorm enaming
layer_keys = [k.replace("_bn.scale", "_bn.weight") for k in layer_keys]
# Make torchvision-compatible
layer_keys = [k.replace("conv1_bn.", "bn1.") for k in layer_keys]
layer_keys = [k.replace("res2.", "layer1.") for k in layer_keys]
layer_keys = [k.replace("res3.", "layer2.") for k in layer_keys]
layer_keys = [k.replace("res4.", "layer3.") for k in layer_keys]
layer_keys = [k.replace("res5.", "layer4.") for k in layer_keys]
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys]
layer_keys = [k.replace(".branch2a_bn.", ".bn1.") for k in layer_keys]
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys]
layer_keys = [k.replace(".branch2b_bn.", ".bn2.") for k in layer_keys]
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys]
layer_keys = [k.replace(".branch2c_bn.", ".bn3.") for k in layer_keys]
layer_keys = [k.replace(".branch1.", ".downsample.0.") for k in layer_keys]
layer_keys = [k.replace(".branch1_bn.", ".downsample.1.") for k in layer_keys]
# GroupNorm
layer_keys = [k.replace("conv1.gn.s", "bn1.weight") for k in layer_keys]
layer_keys = [k.replace("conv1.gn.bias", "bn1.bias") for k in layer_keys]
layer_keys = [k.replace("conv2.gn.s", "bn2.weight") for k in layer_keys]
layer_keys = [k.replace("conv2.gn.bias", "bn2.bias") for k in layer_keys]
layer_keys = [k.replace("conv3.gn.s", "bn3.weight") for k in layer_keys]
layer_keys = [k.replace("conv3.gn.bias", "bn3.bias") for k in layer_keys]
layer_keys = [k.replace("downsample.0.gn.s", "downsample.1.weight") \
for k in layer_keys]
layer_keys = [k.replace("downsample.0.gn.bias", "downsample.1.bias") \
for k in layer_keys]
return layer_keys
def _rename_fpn_weights(layer_keys, stage_names):
for mapped_idx, stage_name in enumerate(stage_names, 1):
suffix = ""
if mapped_idx < 4:
suffix = ".lateral"
layer_keys = [
k.replace("fpn.inner.layer{}.sum{}".format(stage_name, suffix), "fpn_inner{}".format(mapped_idx)) for k in layer_keys
]
layer_keys = [k.replace("fpn.layer{}.sum".format(stage_name), "fpn_layer{}".format(mapped_idx)) for k in layer_keys]
layer_keys = [k.replace("rpn.conv.fpn2", "rpn.conv") for k in layer_keys]
layer_keys = [k.replace("rpn.bbox_pred.fpn2", "rpn.bbox_pred") for k in layer_keys]
layer_keys = [
k.replace("rpn.cls_logits.fpn2", "rpn.cls_logits") for k in layer_keys
]
return layer_keys
def _rename_weights_for_resnet(weights, stage_names):
original_keys = sorted(weights.keys())
layer_keys = sorted(weights.keys())
# for X-101, rename output to fc1000 to avoid conflicts afterwards
layer_keys = [k if k != "pred_b" else "fc1000_b" for k in layer_keys]
layer_keys = [k if k != "pred_w" else "fc1000_w" for k in layer_keys]
# performs basic renaming: _ -> . , etc
layer_keys = _rename_basic_resnet_weights(layer_keys)
# FPN
layer_keys = _rename_fpn_weights(layer_keys, stage_names)
# Mask R-CNN
layer_keys = [k.replace("mask.fcn.logits", "mask_fcn_logits") for k in layer_keys]
layer_keys = [k.replace(".[mask].fcn", "mask_fcn") for k in layer_keys]
layer_keys = [k.replace("conv5.mask", "conv5_mask") for k in layer_keys]
# Keypoint R-CNN
layer_keys = [k.replace("kps.score.lowres", "kps_score_lowres") for k in layer_keys]
layer_keys = [k.replace("kps.score", "kps_score") for k in layer_keys]
layer_keys = [k.replace("conv.fcn", "conv_fcn") for k in layer_keys]
# Rename for our RPN structure
layer_keys = [k.replace("rpn.", "rpn.head.") for k in layer_keys]
key_map = {k: v for k, v in zip(original_keys, layer_keys)}
logger = logging.getLogger(__name__)
logger.info("Remapping C2 weights")
max_c2_key_size = max([len(k) for k in original_keys if "_momentum" not in k])
new_weights = OrderedDict()
for k in original_keys:
v = weights[k]
if "_momentum" in k:
continue
# if 'fc1000' in k:
# continue
w = torch.from_numpy(v)
# if "bn" in k:
# w = w.view(1, -1, 1, 1)
logger.info("C2 name: {: <{}} mapped name: {}".format(k, max_c2_key_size, key_map[k]))
new_weights[key_map[k]] = w
return new_weights
def _load_c2_pickled_weights(file_path):
with open(file_path, "rb") as f:
if torch._six.PY3:
data = pickle.load(f, encoding="latin1")
else:
data = pickle.load(f)
if "blobs" in data:
weights = data["blobs"]
else:
weights = data
return weights
def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg):
import re
logger = logging.getLogger(__name__)
logger.info("Remapping conv weights for deformable conv weights")
layer_keys = sorted(state_dict.keys())
for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1):
if not stage_with_dcn:
continue
for old_key in layer_keys:
pattern = ".*layer{}.*conv2.*".format(ix)
r = re.match(pattern, old_key)
if r is None:
continue
for param in ["weight", "bias"]:
if old_key.find(param) is -1:
continue
new_key = old_key.replace(
"conv2.{}".format(param), "conv2.conv.{}".format(param)
)
logger.info("pattern: {}, old_key: {}, new_key: {}".format(
pattern, old_key, new_key
))
state_dict[new_key] = state_dict[old_key]
del state_dict[old_key]
return state_dict
_C2_STAGE_NAMES = {
"R-50": ["1.2", "2.3", "3.5", "4.2"],
"R-101": ["1.2", "2.3", "3.22", "4.2"],
"R-152": ["1.2", "2.7", "3.35", "4.2"],
}
C2_FORMAT_LOADER = Registry()
@C2_FORMAT_LOADER.register("R-50-C4")
@C2_FORMAT_LOADER.register("R-50-C5")
@C2_FORMAT_LOADER.register("R-101-C4")
@C2_FORMAT_LOADER.register("R-101-C5")
@C2_FORMAT_LOADER.register("R-50-FPN")
@C2_FORMAT_LOADER.register("R-50-FPN-RETINANET")
@C2_FORMAT_LOADER.register("R-101-FPN")
@C2_FORMAT_LOADER.register("R-101-FPN-RETINANET")
@C2_FORMAT_LOADER.register("R-152-FPN")
def load_resnet_c2_format(cfg, f):
state_dict = _load_c2_pickled_weights(f)
conv_body = cfg.MODEL.BACKBONE.CONV_BODY
arch = conv_body.replace("-C4", "").replace("-C5", "").replace("-FPN", "")
arch = arch.replace("-RETINANET", "")
stages = _C2_STAGE_NAMES[arch]
state_dict = _rename_weights_for_resnet(state_dict, stages)
# ***********************************
# for deformable convolutional layer
state_dict = _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg)
# ***********************************
return dict(model=state_dict)
def load_c2_format(cfg, f):
return C2_FORMAT_LOADER[cfg.MODEL.BACKBONE.CONV_BODY](cfg, f)