You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# This is an MAE model trained with pixels as targets for visualization (ViT-Large, training mask ratio=0.75)
# download checkpoint if not exist
!wget -nc https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_large.pth
chkpt_dir = 'mae_visualize_vit_large.pth'
model_mae = prepare_model(chkpt_dir, 'mae_vit_large_patch16')
print('Model loaded.')
Results in the following error
--2024-03-12 18:31:48-- https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_large.pth
Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 13.35.7.50, 13.35.7.38, 13.35.7.82, ...
Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|13.35.7.50|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1318315181 (1.2G) [binary/octet-stream]
Saving to: ‘mae_visualize_vit_large.pth’
mae_visualize_vit_l 100%[===================>] 1.23G 138MB/s in 11s
2024-03-12 18:31:59 (115 MB/s) - ‘mae_visualize_vit_large.pth’ saved [1318315181/1318315181]
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
[<ipython-input-4-062e15d3f32e>](https://localhost:8080/#) in <cell line: 7>()
5
6 chkpt_dir = 'mae_visualize_vit_large.pth'
----> 7 model_mae = prepare_model(chkpt_dir, 'mae_vit_large_patch16')
8 print('Model loaded.')
7 frames
[<ipython-input-2-4a1bff3e6bef>](https://localhost:8080/#) in prepare_model(chkpt_dir, arch)
14 def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'):
15 # build model
---> 16 model = getattr(models_mae, arch)()
17 # load model
18 checkpoint = torch.load(chkpt_dir, map_location='cpu')
[/content/./mae/models_mae.py](https://localhost:8080/#) in mae_vit_large_patch16_dec512d8b(**kwargs)
230
231 def mae_vit_large_patch16_dec512d8b(**kwargs):
--> 232 model = MaskedAutoencoderViT(
233 patch_size=16, embed_dim=1024, depth=24, num_heads=16,
234 decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
[/content/./mae/models_mae.py](https://localhost:8080/#) in __init__(self, img_size, patch_size, in_chans, embed_dim, depth, num_heads, decoder_embed_dim, decoder_depth, decoder_num_heads, mlp_ratio, norm_layer, norm_pix_loss)
61 self.norm_pix_loss = norm_pix_loss
62
---> 63 self.initialize_weights()
64
65 def initialize_weights(self):
[/content/./mae/models_mae.py](https://localhost:8080/#) in initialize_weights(self)
66 # initialization
67 # initialize (and freeze) pos_embed by sin-cos embedding
---> 68 pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
69 self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
70
[/content/./mae/util/pos_embed.py](https://localhost:8080/#) in get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token)
30
31 grid = grid.reshape([2, 1, grid_size, grid_size])
---> 32 pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
33 if cls_token:
34 pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
[/content/./mae/util/pos_embed.py](https://localhost:8080/#) in get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
40
41 # use half of dimensions to encode grid_h
---> 42 emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
43 emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
44
[/content/./mae/util/pos_embed.py](https://localhost:8080/#) in get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
54 """
55 assert embed_dim % 2 == 0
---> 56 omega = np.arange(embed_dim // 2, dtype=np.float)
57 omega /= embed_dim / 2.
58 omega = 1. / 10000**omega # (D/2,)
[/usr/local/lib/python3.10/dist-packages/numpy/__init__.py](https://localhost:8080/#) in __getattr__(attr)
317
318 if attr in __former_attrs__:
--> 319 raise AttributeError(__former_attrs__[attr])
320
321 if attr == 'testing':
AttributeError: module 'numpy' has no attribute 'float'.
`np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
The text was updated successfully, but these errors were encountered:
Under loading a pre-trained model
Results in the following error
The text was updated successfully, but these errors were encountered: