This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pretrain.py
321 lines (269 loc) · 13.5 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
# assert timm.__version__ == "0.3.2" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.crop import RandomResizedCrop as BYOLRandomResizedCrop
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.long_seq_patch_loader import SampleVisiblePatchIndices, MAEIndexCollator
import models_mae
from engine_pretrain import train_one_epoch
try:
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
except ImportError:
xm = xmp = pl = xu = None
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--effective_batch_size', default=-1, type=int,
help='Effective batch size (set to -1 to ignore and use --batch_size)')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--ckpt_interval', default=20, type=int,
help='The interval (in epochs) to save a checkpoint')
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--decoder_embed_dim', default=-1, type=int)
parser.add_argument('--decoder_depth', default=-1, type=int)
parser.add_argument('--no_k_bias_in_vit', action='store_true', dest='no_k_bias_in_vit',
help="Use a variant of ViT without k_bias in ViT self-attention (as in BEiT)")
parser.set_defaults(no_k_bias_in_vit=False)
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--patch_size', default=-1, type=int,
help='ViT patch size (-1 means it will be automatically inferred from `model`')
parser.add_argument('--min_crop', default=0.2, type=float,
help='minimum crop ratio in random resized crop')
parser.add_argument('--max_crop', default=1.0, type=float,
help='maximum crop ratio in random resized crop')
parser.add_argument('--use_byol_crop', action='store_true',
help='Use BYOL random resized crop')
parser.set_defaults(use_byol_crop=False)
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--mask_downsampling', default=1, type=int,
help='Downsampling ratio of masks (e.g. 2 means using 32x32 mask patches for 16x16 image patches).')
parser.add_argument('--decoder_downsampling', default=1, type=int,
help='Downsampling ratio in the MAE decoder (e.g. 2 means using a 2x2 conv w/ stride 2 '
'to downsample the decoder input, giving a smaller decoder sequence length than encoder).')
parser.add_argument('--pred_downsampling', default=1, type=int,
help='Downsampling ratio of prediction target image grid compared to the encoder grid '
'(e.g. 2 means predicting in 32x32 patch size when the encoder patch size is 16x16')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# PyTorch XLA parameters
parser.add_argument('--use_xla', action='store_true',
help='Use PyTorch XLA on TPUs')
parser.set_defaults(use_xla=False)
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
if misc.XLA_CFG["is_xla"]:
device = xm.xla_device()
else:
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
world_size = misc.get_world_size()
assert (args.batch_size > 0) != (args.effective_batch_size > 0) or (
args.batch_size == args.effective_batch_size // world_size // args.accum_iter), \
"only one of --batch_size and --effective_batch_size should be specified (set to -1 to unspecify)"
if args.effective_batch_size > 0:
assert args.effective_batch_size % (world_size * args.accum_iter) == 0
args.batch_size = args.effective_batch_size // world_size // args.accum_iter
# simple augmentation
MAECrop = BYOLRandomResizedCrop if args.use_byol_crop else transforms.RandomResizedCrop
transform_train = transforms.Compose([
MAECrop(args.input_size, scale=(args.min_crop, args.max_crop), interpolation=3), # 3 is bicubic
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if args.patch_size == -1:
# automatically infer the patch size from model names
if "patch14" in args.model:
args.patch_size = 14
elif "patch64" in args.model:
args.patch_size = 64
elif "patch32" in args.model:
args.patch_size = 32
elif "patch24" in args.model:
args.patch_size = 24
elif "patch16" in args.model:
args.patch_size = 16
elif "patch8" in args.model:
args.patch_size = 8
elif "patch4" in args.model:
args.patch_size = 4
else:
raise Exception("cannot automatically infer patch size from args.model")
assert args.input_size % args.patch_size == 0
num_patches = (args.input_size // args.patch_size) ** 2
dataset_train = datasets.ImageFolder(
os.path.join(args.data_path, 'train'),
transform=SampleVisiblePatchIndices(
transform_train, num_patches, args.mask_ratio, args.mask_downsampling,
),
)
print(dataset_train)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_dir is not None and not misc.XLA_CFG["is_xla"]:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
persistent_workers=True,
collate_fn=MAEIndexCollator(),
)
data_loader_train_sampler = data_loader_train.sampler
if misc.XLA_CFG["is_xla"]:
data_loader_train = pl.MpDeviceLoader(data_loader_train, device)
# define the model
model = models_mae.__dict__[args.model](
args=args,
img_size=args.input_size,
patch_size=args.patch_size,
norm_pix_loss=args.norm_pix_loss,
decoder_embed_dim=args.decoder_embed_dim,
decoder_depth=args.decoder_depth,
)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if misc.XLA_CFG["is_xla"]:
misc.broadcast_xla_master_model_param(model)
elif args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train_sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and (epoch % args.ckpt_interval == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def xla_main(index, args):
misc.XLA_CFG["is_xla"] = True
main(args)
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.use_xla:
xmp.spawn(xla_main, args=(args,))
else:
main(args)