-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathcreate_lama_uhn.py
171 lines (145 loc) · 5.28 KB
/
create_lama_uhn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Code to create LAMA-UHN, a subset of LAMA-Google-RE and LAMA-T-REx
# where ``easy-to-guess'' questions are filtered out.
#
# Defaults parameters correspond to setup in the following paper:
#
# @article{poerner2019bert,
# title={BERT is Not a Knowledge Base (Yet): Factual Knowledge vs.
# Name-Based Reasoning in Unsupervised QA},
# author={Poerner, Nina and Waltinger, Ulli and Sch{\"u}tze, Hinrich},
# journal={arXiv preprint arXiv:1911.03681},
# year={2019}
# }
import torch
import json
import os
import argparse
import tqdm
from pytorch_pretrained_bert import BertForMaskedLM, BertTokenizer
class LAMAUHNFilter:
def match(self, sub_label, obj_label, relation):
raise NotImplementedError()
def filter(self, queries):
return [query for query in queries if not self.match(query)]
class PersonNameFilter(LAMAUHNFilter):
TEMP = "[CLS] [X] is a common name in the following [Y] : [MASK] . [SEP]"
PLACENOUNS = {
"/people/person/place_of_birth": "city",
"/people/deceased_person/place_of_death": "city",
"P19": "city",
"P20": "city",
"P27": "country",
"P1412": "language",
"P103": "language",
}
def __init__(self, top_k, bert_name):
super().__init__()
self.do_lower_case = "uncased" in bert_name
self.top_k = top_k
self.tokenizer = BertTokenizer.from_pretrained(
bert_name, do_lower_case=self.do_lower_case
)
self.model = BertForMaskedLM.from_pretrained(bert_name)
self.model.eval()
def get_top_k_for_name(self, template, name):
tokens = self.tokenizer.tokenize(template.replace("[X]", name))
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
output = self.model(torch.tensor(input_ids).unsqueeze(0))[0]
logits = output[tokens.index("[MASK]")].detach()
top_k_ids = torch.topk(logits, k=self.top_k)[1].numpy()
top_k_tokens = self.tokenizer.convert_ids_to_tokens(top_k_ids)
return top_k_tokens
def match(self, query):
relation = query["pred"] if "pred" in query else query["predicate_id"]
if not relation in self.PLACENOUNS:
return False
sub_label, obj_label = query["sub_label"], query["obj_label"]
if self.do_lower_case:
obj_label = obj_label.lower()
sub_label = sub_label.lower()
template = self.TEMP.replace("[Y]", self.PLACENOUNS[relation])
for name in sub_label.split():
if obj_label in self.get_top_k_for_name(template, name):
return True
return False
class StringMatchFilter(LAMAUHNFilter):
def __init__(self, do_lower_case):
self.do_lower_case = do_lower_case
def match(self, query):
sub_label, obj_label = query["sub_label"], query["obj_label"]
if self.do_lower_case:
sub_label = sub_label.lower()
obj_label = obj_label.lower()
return obj_label in sub_label
def main(args):
srcdir = args.srcdir
assert os.path.isdir(srcdir)
srcdir = srcdir.rstrip("/")
tgtdir = srcdir + "_UHN"
if not os.path.exists(tgtdir):
os.mkdir(tgtdir)
uhn_filters = []
if "string_match" in args.filters:
uhn_filters.append(
StringMatchFilter(do_lower_case=args.string_match_do_lowercase)
)
if "person_name" in args.filters:
uhn_filters.append(
PersonNameFilter(
bert_name=args.person_name_bert, top_k=args.person_name_top_k
)
)
for filename in tqdm.tqdm(sorted(os.listdir(srcdir))):
infile = os.path.join(srcdir, filename)
outfile = os.path.join(tgtdir, filename)
with open(infile) as handle:
queries = [json.loads(line) for line in handle]
for uhn_filter in uhn_filters:
queries = uhn_filter.filter(queries)
with open(outfile, "w") as handle:
for query in queries:
handle.write(json.dumps(query) + "\n")
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument(
"--srcdir",
required=True,
type=str,
help="Source directory. Should be Google_RE or TREx_alpaca.",
)
argparser.add_argument(
"--filters",
nargs="+",
type=str,
default=("string_match", "person_name"),
choices=("string_match", "person_name"),
help="Filters to be applied: string_match, person_name or both.",
)
argparser.add_argument(
"--person_name_top_k",
default=3,
type=int,
help="Parameter k for person name filter.",
)
argparser.add_argument(
"--person_name_bert",
default="bert-base-cased",
type=str,
help="BERT version to use for person name filter.",
)
argparser.add_argument(
"--no_string_match_do_lowercase",
default=True,
action="store_false",
dest="string_match_do_lowercase",
help="Set flag to disable lowercasing in string match filter",
)
args = argparser.parse_args()
print(args)
main(args)