-
Notifications
You must be signed in to change notification settings - Fork 108
/
evaluate_retrieved_passages.py
46 lines (33 loc) · 1.31 KB
/
evaluate_retrieved_passages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import logging
import numpy as np
import torch
import src.util
from src.evaluation import calculate_matches
logger = logging.getLogger(__name__)
def validate(data, workers_num):
match_stats = calculate_matches(data, workers_num)
top_k_hits = match_stats.top_k_hits
logger.info('Validation results: top k documents hits %s', top_k_hits)
top_k_hits = [v / len(data) for v in top_k_hits]
logger.info('Validation results: top k documents hits accuracy %s', top_k_hits)
return match_stats.questions_doc_hits
def main(opt):
logger = src.util.init_logger(is_main=True)
with open(opt.data, 'r') as fin:
data = json.load(fin)
answers = [ex['answers'] for ex in data]
questions_doc_hits = validate(data, args.validation_workers)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', required=True, type=str, default=None)
parser.add_argument('--validation_workers', type=int, default=16,
help="Number of parallel processes to validate results")
args = parser.parse_args()
main(args)