This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_process.py
235 lines (217 loc) · 12.1 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import cv2
import json
import copy
import numpy as np
import cairocffi as cairo
def vector_to_raster(vector_images, part_label=False, nodetail=False, side=64, line_diameter=16, padding=16, bg_color=(1,1,1), fg_color=(0,0,0)):
"""
padding and line_diameter are relative to the original 512x512 image.
"""
original_side = 512.
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, side, side)
ctx = cairo.Context(surface)
ctx.set_antialias(cairo.ANTIALIAS_BEST)
ctx.set_line_cap(cairo.LINE_CAP_ROUND)
ctx.set_line_join(cairo.LINE_JOIN_ROUND)
ctx.set_line_width(line_diameter)
# scale to match the new size
# add padding at the edges for the line_diameter
# and add additional padding to account for antialiasing
total_padding = padding * 2. + line_diameter
new_scale = float(side) / float(original_side + total_padding)
ctx.scale(new_scale, new_scale)
ctx.translate(total_padding / 2., total_padding / 2.)
raster_images = []
for i, vector_data in enumerate(vector_images):
# clear background
ctx.set_source_rgb(*bg_color)
ctx.paint()
vector_image = []
x_max = y_max = 0
for step in vector_data['all_strokes']:
vector_image.append([]) # for each step
for stroke in step:
if len(stroke) == 0: # skip the empty stroke
vector_image[-1].append([])
continue
vector_image[-1].append(np.array([stroke[0][:2]]+[point[2:4] for point in stroke])) # add each stroke N x 2
x_max_stroke, y_max_stroke = np.max(vector_image[-1][-1], 0)
x_max = x_max_stroke if x_max_stroke>x_max else x_max
y_max = y_max_stroke if y_max_stroke>y_max else y_max
offset = ((original_side, original_side) - np.array([x_max, y_max])) / 2.
offset = offset.reshape(1,2)
for j in range(len(vector_image)):
for k in range(len(vector_image[j])):
vector_image[j][k] = vector_image[j][k]+offset if len(vector_image[j][k]) > 0 else vector_image[j][k]
# draw strokes, this is the most cpu-intensive part
ctx.set_source_rgb(*fg_color)
for j, step in enumerate(vector_image):
if part_label:
ctx.set_source_rgb(*COLORS[vector_data['partsUsed'][j]])
if nodetail and j == len(vector_image)-1 and vector_data['partsUsed'][j] == 'details':
continue
for stroke in step:
if len(stroke) == 0:
continue
ctx.move_to(stroke[0][0], stroke[0][1])
for x, y in stroke:
ctx.line_to(x, y)
ctx.stroke()
surface_data = surface.get_data()
if part_label:
raster_image = np.copy(np.asarray(surface_data)).reshape(side, side, 4)[:, :, :3]
else:
raster_image = np.copy(np.asarray(surface_data))[::4].reshape(side, side)
raster_images.append(raster_image)
return raster_images
def vector_image_to_vector_part(vector_images, target_part, side=64, line_diameter=16, padding=16, data_name='bird'):
"""
save processed vector image for target_parts: input partial images, input parts and target images with target parts
"""
original_side = 512.
# scale to match the new size
# add padding at the edges for the line_diameter
# and add additional padding to account for antialiasing
total_padding = padding * 2. + line_diameter
new_scale = float(side) / float(original_side + total_padding)
processed_vector_input_parts = []
processed_vector_parts = []
# each item in processed_vector_images is a list that corresponds to all target parts that appear in that sketch
for i, vector_data in enumerate(vector_images):
# check if target part is drawn
processed_vector_input_parts.append([])
processed_vector_parts.append([])
# store the strokes for each part
if data_name == 'bird':
strokes_input_parts = {'initial':[], 'eye':[], 'beak':[], 'body':[], 'head':[], 'legs':[], 'mouth':[], 'tail':[], 'wings':[]}
elif data_name == 'creature':
strokes_input_parts = {'initial':[], 'eye':[], 'arms':[], 'beak':[], 'mouth':[], 'body':[], 'ears':[], 'feet':[], 'fin':[], 'hair':[], 'hands':[],
'head':[], 'horns':[], 'legs':[], 'nose':[], 'paws':[], 'tail':[], 'wings':[]}
if target_part not in vector_data['partsUsed']:
continue
vector_image = []
x_max = y_max = 0
for step in vector_data['all_strokes']:
vector_image.append([]) # for each step
for stroke in step:
if len(stroke) == 0: # skip the empty stroke
vector_image[-1].append([])
continue
vector_image[-1].append(np.array([stroke[0][:2]]+[point[2:4] for point in stroke])) # add each stroke N x 2
x_max_stroke, y_max_stroke = np.max(vector_image[-1][-1], 0)
x_max = x_max_stroke if x_max_stroke>x_max else x_max
y_max = y_max_stroke if y_max_stroke>y_max else y_max
offset = ((original_side, original_side) - np.array([x_max, y_max])) / 2.
offset = offset.reshape(1,2)
for j in range(len(vector_image)):
for k in range(len(vector_image[j])):
vector_image[j][k] = vector_image[j][k]+offset if len(vector_image[j][k]) > 0 else vector_image[j][k]
# save strokes
for j, step in enumerate(vector_image):
if vector_data['partsUsed'][j] == target_part: # find one part
processed_vector_input_parts[-1].append(copy.deepcopy(strokes_input_parts))
if j != len(vector_image)-1 and vector_data['partsUsed'][j] != 'details': # last one and details
strokes_input_parts[vector_data['partsUsed'][j]] += step
else:
continue
if vector_data['partsUsed'][j] == target_part:
# record the input + part
processed_vector_parts[-1].append(step)
# record all the parts
processed_vector_input_parts[-1].append(copy.deepcopy(strokes_input_parts))
return processed_vector_input_parts, processed_vector_parts
########################################################################################################################
########################################################################################################################
# basic setups, load data
data_name = 'bird' # or 'creature'
side=64 # size of the rendered image
## data format: ['assignment_id', 'hit_id', 'worker_id', 'output', 'submit_time']
## 'output' --> ['all_strokes', 'prompts', 'comment', 'description', 'partsUsed']
if data_name == 'bird':
COLORS = {'initial':np.array([45, 169, 145])/255., 'eye':np.array([243, 156, 18])/255., 'none':np.array([149, 165, 166])/255.,
'beak':np.array([211, 84, 0])/255., 'body':np.array([41, 128, 185])/255., 'details':np.array([171, 190, 191])/255.,
'head':np.array([192, 57, 43])/255., 'legs':np.array([142, 68, 173])/255., 'mouth':np.array([39, 174, 96])/255.,
'tail':np.array([69, 85, 101])/255., 'wings':np.array([127, 140, 141])/255.}
part_to_id = {'initial': 0, 'eye': 1, 'beak': 2, 'body': 3, 'head': 4, 'legs': 5, 'mouth': 6, 'tail': 7, 'wings': 8}
target_parts = ['eye', 'beak', 'body', 'head', 'legs', 'mouth', 'tail', 'wings', 'details']
data = json.loads(open('raw_data_clean/creative_birds_json.txt').read())
elif data_name == 'creature':
COLORS = {'initial':np.array([45, 169, 145])/255., 'eye':np.array([243, 156, 18])/255., 'none':np.array([149, 165, 166])/255.,
'arms':np.array([211, 84, 0])/255., 'beak':np.array([41, 128, 185])/255., 'mouth':np.array([54, 153, 219])/255.,
'body':np.array([192, 57, 43])/255., 'ears':np.array([142, 68, 173])/255., 'feet':np.array([39, 174, 96])/255.,
'fin':np.array([69, 85, 101])/255., 'hair':np.array([127, 140, 141])/255., 'hands':np.array([45, 63, 81])/255.,
'head':np.array([241, 197, 17])/255., 'horns':np.array([51, 205, 117])/255., 'legs':np.array([232, 135, 50])/255.,
'nose':np.array([233, 90, 75])/255., 'paws':np.array([160, 98, 186])/255., 'tail':np.array([58, 78, 99])/255.,
'wings':np.array([198, 203, 207])/255., 'details':np.array([171, 190, 191])/255.}
part_to_id = {'initial': 0, 'eye': 1, 'arms': 2, 'beak': 3, 'mouth': 4, 'body': 5, 'ears': 6, 'feet': 7, 'fin': 8,
'hair': 9, 'hands': 10, 'head': 11, 'horns': 12, 'legs': 13, 'nose': 14, 'paws': 15, 'tail': 16, 'wings':17}
target_parts = ['arms', 'beak', 'mouth', 'body', 'eye', 'ears', 'feet', 'fin', 'hair', 'hands',
'head', 'horns', 'legs', 'nose', 'paws', 'tail', 'wings', 'details']
data = json.loads(open('raw_data_clean/creative_creatures_json.txt').read())
data = [json.loads(line) for j in range(1, 12) for line in open('raw_data/doodle_generic_%d.txt'%j)]
wid_rej = [line.rstrip() for line in open('raw_data/reject_generic_workids_all.txt')]
########################################################################################################################
# visualize all the sketches by rendering raster images
raster_images_gs = vector_to_raster(data, part_label=False, nodetail=True, side=side, line_diameter=3, padding=16, bg_color=(0,0,0), fg_color=(1,1,1))
raster_images_rgb = vector_to_raster(data, part_label=True, nodetail=True, side=side, line_diameter=3, padding=16, bg_color=(1,1,1), fg_color=(0,0,0))
outpath = os.path.join('data/%s_short_full_%d'%(data_name, side))
outpath_rgb = os.path.join('data/%s_short_full_rgb_%d'%(data_name, side))
if not os.path.exists(outpath):
os.mkdir(outpath)
os.mkdir(outpath_rgb)
for i, (raster_image, raster_image_rgb) in enumerate(zip(raster_images_gs[:100], raster_images_rgb[:100])):
if not data[i]['good_sample']:
continue
cv2.imwrite(os.path.join(outpath, "sketch_%s.png"%i), raster_image)
cv2.imwrite(os.path.join(outpath_rgb, "sketch_%s.png"%i), raster_image_rgb)
descriptions = [item['description'].strip() for item in data if item['good_sample']]
with open('%s_description.json'%data_name, 'w') as fp:
json.dump(descriptions, fp)
########################################################################################################################
## process vectors images for doodlerGAN
for target_part in target_parts:
print('rendering %s...'%target_part)
vector_input_parts, vector_parts = vector_image_to_vector_part(data, target_part=target_part, side=side, line_diameter=16, padding=16, data_name=data_name)
outpath_train = 'data/%s_short_%s_json_%d_train'%(data_name, target_part, side)
outpath_test = 'data/%s_short_%s_json_%d_test'%(data_name, target_part, side)
if not os.path.exists(outpath_test):
os.mkdir(outpath_test)
os.mkdir(outpath_train)
for i in range(len(data)-500):
if not data[i]['good_sample']:
continue
if len(vector_input_parts[i]) == 0:
continue
for j in range(len(vector_input_parts[i])-1):
if data_name == 'bird':
json_data = {'input_parts':{'initial': [], 'eye': [], 'head': [], 'body': [], 'beak': [], 'legs': [], 'wings': [], 'mouth': [], 'tail': []}, 'target_part':[]}
elif data_name == 'creature':
json_data = {'input_parts':{'initial':[], 'eye':[], 'arms':[], 'beak':[], 'mouth':[], 'body':[], 'ears':[], 'feet':[], 'fin':[], 'hair':[], 'hands':[],
'head':[], 'horns':[], 'legs':[], 'nose':[], 'paws':[], 'tail':[], 'wings':[]}, 'target_part':[]}
if target_part != 'none':
json_data['target_part'] = [item.tolist() for item in vector_parts[i][j] if len(item) > 0]
for key in vector_input_parts[i][j].keys():
json_data['input_parts'][key] = [item.tolist() for item in vector_input_parts[i][j][key] if len(item) > 0]
with open(outpath_train+"/sketch%d_%d.json"%(i, j), 'w') as fw:
json.dump(json_data, fw)
for i in range(len(data)-500, len(data)):
if not data[i]['good_sample']:
continue
if len(vector_input_parts[i]) == 0:
continue
for j in range(len(vector_input_parts[i])-1):
if data_name == 'bird':
json_data = {'input_parts':{'initial': [], 'eye': [], 'head': [], 'body': [], 'beak': [], 'legs': [], 'wings': [], 'mouth': [], 'tail': []}, 'target_part':[]}
elif data_name == 'creature':
json_data = {'input_parts':{'initial':[], 'eye':[], 'arms':[], 'beak':[], 'mouth':[], 'body':[], 'ears':[], 'feet':[], 'fin':[], 'hair':[], 'hands':[],
'head':[], 'horns':[], 'legs':[], 'nose':[], 'paws':[], 'tail':[], 'wings':[]}, 'target_part':[]}
if target_part != 'none':
json_data['target_part'] = [item.tolist() for item in vector_parts[i][j] if len(item) > 0]
for key in vector_input_parts[i][j].keys():
json_data['input_parts'][key] = [item.tolist() for item in vector_input_parts[i][j][key] if len(item) > 0]
with open(outpath_test+"/sketch%d_%d.json"%(i, j), 'w') as fw:
json.dump(json_data, fw)