diff --git a/tutorials/relay/deploy_model_on_rasp.py b/tutorials/relay/deploy_model_on_rasp.py new file mode 100644 index 0000000000000..b90127b3858e5 --- /dev/null +++ b/tutorials/relay/deploy_model_on_rasp.py @@ -0,0 +1,207 @@ +""" +.. _tutorial-deploy-model-on-rasp: + +Deploy the Pretrained Model on Raspberry Pi +=========================================== +**Author**: `Ziheng Jiang `_, \ + `Hiroyuki Makino `_ + +This is an example of using Relay to compile a ResNet model and deploy +it on Raspberry Pi. +""" + +import tvm +import tvm.relay as relay +from tvm import rpc +from tvm.contrib import util, graph_runtime as runtime + +###################################################################### +# .. _build-tvm-runtime-on-device: +# +# Build TVM Runtime on Device +# --------------------------- +# +# The first step is to build tvm runtime on the remote device. +# +# .. note:: +# +# All instructions in both this section and next section should be +# executed on the target device, e.g. Raspberry Pi. And we assume it +# has Linux running. +# +# Since we do compilation on local machine, the remote device is only used +# for running the generated code. We only need to build tvm runtime on +# the remote device. +# +# .. code-block:: bash +# +# git clone --recursive https://github.com/dmlc/tvm +# cd tvm +# mkdir build +# cp cmake/config.cmake build +# cd build +# cmake .. +# make runtime -j4 +# +# After building runtime successfully, we need to set environment varibles +# in :code:`~/.bashrc` file. We can edit :code:`~/.bashrc` +# using :code:`vi ~/.bashrc` and add the line below (Assuming your TVM +# directory is in :code:`~/tvm`): +# +# .. code-block:: bash +# +# export PYTHONPATH=$PYTHONPATH:~/tvm/python +# +# To update the environment variables, execute :code:`source ~/.bashrc`. + +###################################################################### +# Set Up RPC Server on Device +# --------------------------- +# To start an RPC server, run the following command on your remote device +# (Which is Raspberry Pi in our example). +# +# .. code-block:: bash +# +# python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090 +# +# If you see the line below, it means the RPC server started +# successfully on your device. +# +# .. code-block:: bash +# +# INFO:root:RPCServer: bind to 0.0.0.0:9090 +# + +###################################################################### +# Prepare the Pre-trained Model +# ----------------------------- +# Back to the host machine, which should have a full TVM installed (with LLVM). +# +# We will use pre-trained model from +# `MXNet Gluon model zoo `_. +# You can found more details about this part at tutorial :ref:`tutorial-from-mxnet`. + +from mxnet.gluon.model_zoo.vision import get_model +from mxnet.gluon.utils import download +from PIL import Image +import numpy as np + +# one line to get the model +block = get_model('resnet18_v1', pretrained=True) + +###################################################################### +# In order to test our model, here we download an image of cat and +# transform its format. +img_name = 'cat.png' +download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name) +image = Image.open(img_name).resize((224, 224)) + +def transform_image(image): + image = np.array(image) - np.array([123., 117., 104.]) + image /= np.array([58.395, 57.12, 57.375]) + image = image.transpose((2, 0, 1)) + image = image[np.newaxis, :] + return image + +x = transform_image(image) + +###################################################################### +# synset is used to transform the label from number of ImageNet class to +# the word human can understand. +synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', + '4d0b62f3d01426887599d4f7ede23ee5/raw/', + '596b27d23537e5a1b5751d2b0481ef172f58b539/', + 'imagenet1000_clsid_to_human.txt']) +synset_name = 'synset.txt' +download(synset_url, synset_name) +with open(synset_name) as f: + synset = eval(f.read()) + +###################################################################### +# Now we would like to port the Gluon model to a portable computational graph. +# It's as easy as several lines. + +# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon +shape_dict = {'data': x.shape} +func, params = relay.frontend.from_mxnet(block, shape_dict) +# we want a probability so add a softmax operator +func = relay.Function(func.params, relay.nn.softmax(func.body), None, func.type_params, func.attrs) + +###################################################################### +# Here are some basic data workload configurations. +batch_size = 1 +num_classes = 1000 +image_shape = (3, 224, 224) +data_shape = (batch_size,) + image_shape + +###################################################################### +# Compile The Graph +# ----------------- +# To compile the graph, we call the :any:`relay.build` function +# with the graph configuration and parameters. However, You cannot to +# deploy a x86 program on a device with ARM instruction set. It means +# Relay also needs to know the compilation option of target device, +# apart from arguments :code:`net` and :code:`params` to specify the +# deep learning workload. Actually, the option matters, different option +# will lead to very different performance. + +###################################################################### +# If we run the example on our x86 server for demonstration, we can simply +# set it as :code:`llvm`. If running it on the Raspberry Pi, we need to +# specify its instruction set. Set :code:`local_demo` to False if you want +# to run this tutorial with a real device. + +local_demo = True + +if local_demo: + target = tvm.target.create('llvm') +else: + target = tvm.target.arm_cpu('rasp3b') + # The above line is a simple form of + # target = tvm.target.create('llvm -device=arm_cpu -model=bcm2837 -target=armv7l-linux-gnueabihf -mattr=+neon') + +with relay.build_config(opt_level=3): + graph, lib, params = relay.build(func, target, params=params) + +# After `relay.build`, you will get three return values: graph, +# library and the new parameter, since we do some optimization that will +# change the parameters but keep the result of model as the same. + +# Save the library at local temporary directory. +tmp = util.tempdir() +lib_fname = tmp.relpath('net.tar') +lib.export_library(lib_fname) + +###################################################################### +# Deploy the Model Remotely by RPC +# -------------------------------- +# With RPC, you can deploy the model remotely from your host machine +# to the remote device. + +# obtain an RPC session from remote device. +if local_demo: + remote = rpc.LocalSession() +else: + # The following is my environment, change this to the IP address of your target device + host = '10.77.1.162' + port = 9090 + remote = rpc.connect(host, port) + +# upload the library to remote device and load it +remote.upload(lib_fname) +rlib = remote.load_module('net.tar') + +# create the remote runtime module +ctx = remote.cpu(0) +module = runtime.create(graph, rlib, ctx) +# set parameter (upload params to the remote device. This may take a while) +module.set_input(**params) +# set input data +module.set_input('data', tvm.nd.array(x.astype('float32'))) +# run +module.run() +# get output +out = module.get_output(0) +# get top1 result +top1 = np.argmax(out.asnumpy()) +print('TVM prediction top-1: {}'.format(synset[top1]))