-
Notifications
You must be signed in to change notification settings - Fork 0
/
explicitly-correlated-methods.tex
592 lines (522 loc) · 39.7 KB
/
explicitly-correlated-methods.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
\documentclass[journal=jacsat]{achemso}
%%%%%%%%%%%%%%%%%%%%%%%
% Includes various packages for extra functionality
%%%%%%%%%%%%%%%%%%%%%%%
%\usepackage{modiagram} % Molecular orbital diagrams
\usepackage{mathtools} % Make pretty formulas
\usepackage{fixltx2e} % Allow subscripts
\usepackage{graphicx} % Improved graphics
\usepackage{bm} % Bold math symbols
\usepackage{txfonts} % Allow times-like fonts in equations
\usepackage{mathpazo} % Palatino fonts for equations
\usepackage{dcolumn} % Align tabular columns on decimal points
\usepackage{footmisc} % Foot note options
\usepackage{mathrsfs} % RSFS fonts in equations
\usepackage{mhchem}
\usepackage{braket}
\usepackage{commath}
\usepackage[T1]{fontenc}
\usepackage{currvita}
\numberwithin{equation}{section}
\usepackage{simplewick}
%\usepackage[polish]{babel} % Select language standard
%\usepackage{natbib} % Support for various natbib BibTex styles
% This is for use of Times New Roman
\usepackage[T1]{fontenc}
\usepackage{times}
\newcommand{\T}[4]{T^{#1 #2}_{#3 #4}}
\renewcommand{\O}[1]{$\mathcal{O}\left( #1 \right)$}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\renewcommand{\baselinestretch}{2} % This is for the use of double space
%\setkeys{acs}{articletitle = true} % Include title in bibliography
%%%%%%%%%%%%%%%%%%%%%%%
% Start document
%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
% Title page
%%%%%%%%%%%%%%%%%%%%%%%
\author{Fabijan Pavo\v{s}evi\'{c}}
\email{[email protected]}
\affiliation[Virginia Tech]
{Department of Chemistry, Virginia Tech, Blacksburg, VA}
\title{Explicitly correlated methods}
\date{September 6, 2013}
\SectionNumbersOn
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%
% Paper
%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\tableofcontents
\newpage
\section{Rayleigh-Schr\"{o}dinger Perturbation theory}
The exact Schr\"{o}dinger equation of the form
\begin{align}
\label{eq:schrodinger_eq}
\hat{H}\ket{\Psi_{i}}=E_{i}\ket{\Psi_{i}}
\end{align}
is too complex to be solved exactly. One way to find an approximate solution to Schr\"{o}dinger equation is via perturbation theory in which we divide Hamiltonian operator into zeroth- and first-order contributions as:
\begin{align}
\hat{H}=\hat{H}^{(0)} + \lambda\hat{H}^{(1)}
\end{align}
where $ \hat{H}^{(1)}$ represents a small perturbation to the system while for the $\hat{H}^{(0)}$ we have and exact solution. Furthermore, we can expand energy and wavefunction as:
\begin{align}
E_{i} &= E_{i}^{(0)} + \lambda E_{i}^{(1)} + \lambda^{2} E_{i}^{(2)} + ...\\
\ket{\Psi_{i}} &= \ket{\Psi_{i}^{(0)}} + \lambda \ket{\Psi_{i}^{(1)}} + \lambda^{2} \ket{\Psi_{i}^{(2)}} + ...
\end{align}
Insertion of such defined Hamiltonian, wavefunction and energy into Eq. \ref{eq:schrodinger_eq}, we obtain
\begin{align}
(\hat{H}^{(0)} + \lambda\hat{H}^{(1)})(\ket{\Psi_{i}^{(0)}} + \lambda \ket{\Psi_{i}^{(1)}} + \lambda^{2} \ket{\Psi_{i}^{(2)}} + ...)=\\
(E_{i}^{(0)} + \lambda E_{i}^{(1)} + \lambda^{2} E_{i}^{(2)} + ...)
(\ket{\Psi_{i}^{(0)}} + \lambda \ket{\Psi_{i}^{(1)}} + \lambda^{2} \ket{\Psi_{i}^{(2)}} + ...)
\end{align}
Collecting the terms with the same order of $\lambda$ gives:
\begin{align}
\lambda^{0}:& \hat{H}^{(0)}\ket{\Psi_{i}^{(0)}}=E_{i}^{(0)}\ket{\Psi_{i}^{(0)}}\\
\lambda^{1}:& \hat{H}^{(0)}\ket{\Psi_{i}^{(1)}} + \hat{H}^{(1)}\ket{\Psi_{i}^{(0)}}=E_{i}^{(0)}\ket{\Psi_{i}^{(1)}}+E_{i}^{(1)}\ket{\Psi_{i}^{(0)}}\\
\lambda^{n}:& \hat{H}^{(0)}\ket{\Psi_{i}^{(n)}} + \hat{H}^{(1)}\ket{\Psi_{i}^{(n-1)}}=\sum_{k=0}^{n}E_{i}^{(k)}\ket{\Psi_{i}^{(n-k)}}
\end{align}
In order to obtain $n-th$ order energy expression, we can project $\lambda^{n}$ equation on the right hand side by $\bra{\Psi_{i}^{(0)}}$. After doing some straight forward algebra, we arrive at the first- and second order energy correction:
\begin{align}
E_{i}^{(1)}&=\bra{\Psi_{i}^{(0)}}\hat{H}^{(1)}\ket{\Psi_{i}^{(0)}}\\
E_{i}^{(2)}&=\bra{\Psi_{i}^{(0)}}\hat{H}^{(1)}\ket{\Psi_{i}^{(1)}}
\end{align}
Finally, in this section we define second-order Hylleraas functional as:
\begin{align}
H^{(2)}=2Re\bra{\Psi_{i}^{(0)}}\hat{H}^{(1)}-E^{(1)}\ket{\Psi_{i}^{(1)}}+\bra{\Psi_{i}^{(1)}}\hat{H}^{(0)}-E^{(0)}\ket{\Psi_{i}^{(1)}}
\end{align}
\section{Second Quantization}
We define a creation operator by its action on a Slater determinant:
\begin{align}
a_{p}^{\dagger}\ket{\phi_{q}...\phi_{r}}=\ket{\phi_{p}\phi_{q}...\phi_{r}}
\end{align}
In the same way, we define annihilation operator:
\begin{align}
a_{p}\ket{\phi_{p}\phi_{q}...\phi_{r}}=\ket{\phi_{q}...\phi_{r}}
\end{align}
Slater determinant can be written as a chain of creation operators acting on the true (genuine) vacuum state ($\ket{vac}$):
\begin{align}
a_{p}^{\dagger}a_{q}^{\dagger}...a_{r}^{\dagger}\ket{vac}=\ket{\phi_{p}\phi_{q}...\phi_{r}}.
\end{align}
Action of the annihilation operator onto vacuum state is:
\begin{align}
a_{p}\ket{vac}=0.
\end{align}
The creation and annihilation operators obey anti commutation rules which can be derived from:
\begin{align}
a_{q}^{\dagger}a_{p}^{\dagger}\ket{vac}=\ket{\phi_{q}\phi_{p}}=-\ket{\phi_{p}\phi_{q}}=-a_{p}^{\dagger}a_{q}^{\dagger}\ket{vac}
\end{align}
giving the firs anti commutation relation:
\begin{align}
[a_{q}^{\dagger},a_{p}^{\dagger}]_{+}=0
\end{align}
Analogous relation can be obtained by taking complex conjugated for of the previous anti commutation relation giving:
\begin{align}
[a_{q},a_{p}]_{+}=0
\end{align}
The final anti commutation relation may be obtained by considering:
\begin{align}
(a_{p}a_{p}^{\dagger}+a_{p}^{\dagger}a_{p})\ket{\phi_{q}...\phi_{r}}=a_{p}a_{p}^{\dagger}\ket{\phi_{q}...\phi_{r}}=\ket{\phi_{q}...\phi_{r}}
\end{align}
giving
\begin{align}
a_{p}a_{p}^{\dagger}+a_{p}^{\dagger}a_{p}=1
\end{align}
and
\begin{align}
&(a_{p}a_{q}^{\dagger}+a_{q}^{\dagger}a_{p})\ket{\phi_{p}...\phi_{r}}=a_{p}a_{q}^{\dagger}\ket{\phi_{p}...\phi_{r}}+a_{q}^{\dagger}a_{p}\ket{\phi_{p}...\phi_{r}}=\\
&=a_{p}\ket{\phi_{q}\phi_{p}...\phi_{r}}+a_{q}^{\dagger}\ket{...\phi_{r}}=-\ket{\phi_{q}...\phi_{r}}+\ket{\phi_{q}...\phi_{r}}=0
\end{align}
giving the
\begin{align}
a_{p}a_{q}^{\dagger}+a_{q}^{\dagger}a_{p}=0
\end{align}
The two expressions can be written using the one expression as:
\begin{align}
[a_{p},a_{q}^{\dagger}]_{+}=\delta_{pq}
\end{align}
\subsection{Wick's theorem}
Contraction for the product of two cration/annihalation operators is defined as:
\begin{align}
\contraction{}{A}{B}{}
AB\equiv AB - \{AB\}
\end{align}
where $\{AB\}$ denotes a normal ordered string. Normal ordered string with the respect to true vacuum is in which all annihilation operators are on the right of all creation operators.
An example of normal ordered string is:
\begin{align}
a_{q}^{\dagger}a_{p}\ket{vac}=0\\
a_{p}\ket{vac}=0
\end{align}
In order to simplify the notation, we define creation and annihilation operators as:
\begin{align}
a_{p}^{\dagger}=a^{p} \\
a_{p}=a_{p}\\
a_{p}^{\dagger}a_{q}=a_{q}^{p}\\
a_{p}^{\dagger}a_{q}^{\dagger}a_{r}a_{s}=a^{pq}_{sr}
\end{align}
Up to four contraction can be defined using string of two creation/annihilation operators as:
\begin{align}
\contraction{}{A}{B}{}
a_{p}q_{q}&= a_{p}q_{q} - \{a_{p}q_{q}\}\\
\contraction{}{A}{B}{}
a_{p}^{\dagger}q_{q}^{\dagger}&= a_{p}^{\dagger}q_{q}^{\dagger} - \{a_{p}^{\dagger}q_{q}^{\dagger}\}\\
\contraction{}{A}{B}{}
a_{p}^{\dagger}q_{q}&= a_{p}^{\dagger}q_{q} - \{a_{p}^{\dagger}q_{q}\}\\
\contraction{}{A}{B}{}
a_{p}q_{q}^{\dagger}&= a_{p}q_{q}^{\dagger} - \{a_{p}q_{q}^{\dagger}\}=\delta_{pq}
\end{align}
or equivalently using tensor notation:
\begin{align}
\contraction{}{A}{B}{}
a_{p}q_{q}&= a_{p}q_{q} - \{a_{p}q_{q}\}\\
\contraction{}{A}{B}{}
a^{p}q^{q}&= a^{p}q^{q} - \{a^{p}q^{q}\}\\
\contraction{}{A}{B}{}
a^{p}q_{q}&= a^{p}q_{q} - \{a^{p}q_{q}\}\\
\contraction{}{A}{B}{}
a_{p}q^{q}&= a_{p}q^{q} - \{a_{p}q^{q}\}=\delta_{p}^{q}
\end{align}
Wick's theorem states that any string of creation/annihilation operators can be expressed as the sum of normal ordered string with sums of single, double and so on contractions expressed by:
\begin{align}
AB...CD = \{AB...CD\}+
\sum_{singles}
\contraction{A}{B}{B}{}
\{AB...CD\}+\sum_{doubles}\{AB...CD\}+...
\end{align}
The formalism that we have introduced for true vacuum can be extended to Fermi vacuum or the particle-hole formalism. Fermi vacuum is Hartree-Fock Slater determinant $\ket{\Phi_{0}}$. Occupied orbitals in $\ket{\Phi_{0}}$ denoted by $i,j,k...$ are called hole states, while unoccupied, $a,b,c...$ are particle states. In the case of HF Slater determinant, we define q-creation operators (creating holes and particles), $a_{i}$ and $a^{a}$ and q-annihilation operators (annihilating hole and particles), $a^{i}$ and $a_{a}$. From such definition, we arrive at two possible contractions:
\begin{align}
a^{i}a_{j}=\delta^{i}_{j}\\
a_{a}a^{b}=\delta^{b}_{a}
\end{align}
\subsection{Normal-ordered electronic Hamiltonian using spin-orbital formalism}
Hamiltonian operator expressed in terms of creation and annihilation operators is of the form:
\begin{align}
\hat{H} = \sum_{pq}\bra{p}\hat{h}\ket{q}a^{\dagger}_{p}a_{q}+\frac{1}{4}\sum_{pqrs}\bra{pq}\ket{rs}a_{p}^{\dagger}a_{q}^{\dagger}a_{s}a_{r}
\end{align}
Tensor notation for the matrix elements and operators:
\begin{align}
\bra{p}\hat{h}\ket{q}=h^{q}_{p}\\
\bra{pq}\frac{1}{r_{12}}\ket{rs}=g^{rs}_{pq}
\end{align}
We can extend the notation on one- and two- electron parts of the Hamiltonian operator as:
\begin{align}
h_{1}&=\sum_{pq}\bra{p}\hat{h}\ket{q}a^{\dagger}_{p}a_{q}=h^{q}_{p}a^{p}_{q}\\
h_{2}&=\sum_{pqrs}\bra{pq}\ket{rs}a_{p}^{\dagger}a_{q}^{\dagger}a_{s}a_{r}=\bar{g}^{rs}_{pq}a^{pq}_{rs}
\end{align}
where $\bar{g}^{rs}_{pq} = g^{rs}_{pq} - g^{rs}_{qr}$. Then Hamiltonian is of the form:
\begin{align}
\hat{H}=h^{q}_{p}a^{p}_{q}+\frac{1}{4}\bar{g}^{rs}_{pq}a^{pq}_{rs}
\end{align}
Such defined Hamiltonian has a general form and we want to define it using the normal ordering convention. One particle part of the Hamiltonian in normal-ordered form is:
\begin{align}
\hat{H}_{1}=h^{q}_{p}a^{p}_{q}=h^{q}_{p}a^{p}_{q}=h^{q}_{p}(\{a^{p}a_{q}\}+\delta^{p}_{q}\delta_{q\in i})=h^{q}_{p}(\tilde{a}^{p}_{q}+\delta^{p}_{q}\delta_{q\in i})=h^{q}_{p}\tilde{a}^{p}_{q}+\sum_{i}^{occ}h^{i}_{i}
\end{align}
while two-particle part of the Hamiltonian operator in the normal ordered form is:
\begin{align}
\hat{H}_{2}&=\frac{1}{4}\bar{g}_{pq}^{rs}a^{pq}_{rs}\\\nonumber
&=\frac{1}{4}\bar{g}_{pq}^{rs}(\tilde{a}^{pq}_{rs})+\tilde{a}^{p}_{r}\delta^{q}_{s}\delta_{s\in i} + \tilde{a}^{q}_{s}\delta^{p}_{r}\delta_{r\in i} - \tilde{a}^{q}_{r}\delta^{p}_{s}\delta_{s\in i} -
\tilde{a}^{p}_{s}\delta^{q}_{r}\delta_{r\in i} + \delta^{q}_{s}\delta_{s\in i}\delta^{p}_{r}\delta_{r\in j} - \delta^{p}_{s}\delta_{s\in i}\delta^{q}_{r}\delta_{r\in j}\\\nonumber
&=\frac{1}{4}(\bar{g}^{rs}_{pq}\tilde{a}^{pq}_{rs}+\bar{g}^{ri}_{pq}\tilde{a}^{p}_{r}+\bar{g}^{is}_{iq}\tilde{a}^{q}_{s}-\bar{g}^{ri}_{iq}\tilde{a}^{q}_{r}-\bar{g}^{is}_{pi}\tilde{a}^{p}_{s}+\bar{g}^{ji}_{ji}-\bar{g}^{ji}_{ij})=\frac{1}{4}\bar{g}^{rs}_{pq}\tilde{a}^{pq}_{rs}+\bar{g}^{qi}_{pq}\tilde{a}^{p}_{q}+\frac{1}{2}\bar{g}^{ij}_{ij}
\end{align}
Combining these two contributions to form total Hamiltonian, we obtain:
\begin{align}
\hat{H}=h^{i}_{i}+\frac{1}{2}\bar{g}^{ij}_{ij} + (h^{p}_{q}+\bar{g}^{iq}_{ip})\tilde{a}^{p}_{q}+\frac{1}{4}\bar{g}^{rs}_{pq}\tilde{a}^{pq}_{rs}
\end{align}
The three distinct contributions are as follows:
\begin{align}
E_{\text{HF}}&=h^{i}_{i}+\frac{1}{2}\bar{g}^{ij}_{ij}\\
\hat{F}_{N}&=(h^{p}_{q}+\bar{g}^{iq}_{ip})\tilde{a}^{p}_{q}\\
\hat{W}_{N}&=\frac{1}{4}\bar{g}^{rs}_{pq}\tilde{a}^{pq}_{rs}
\end{align}
with $E_{\text{HF}}$ being Hartree-Fock energy, $F_{N}$ normal-ordered Fock operator and $W_{N}$ is fluctuation operator. This allows us to define normal-ordered Hamiltonian as:
\begin{align}
\hat{H}_{N}= \hat{H}-\bra{\Psi_{0}}\hat{H}\ket{\Psi_{0}}=\hat{F}_{N}+\hat{W}_{N}
\end{align}
\subsection{Normal-ordered spin-free Hamiltonian}
One-particle Hamiltonian is:
\begin{align}
\hat{H}_{1}&=h^{p}_{q}a^{q}_{p}=\sum_{pq}\sum_{\rho\sigma}h^{p_{\rho}}_{q_{\sigma}}a^{q_{\sigma}}_{p_{\rho}}=\sum_{pq}\sum_{\rho\sigma}\bra{\phi_{q}\sigma} \hat{h}\ket{\phi_{p}\rho} a^{q_{\sigma}}_{p_{\rho}}\\
&=\sum_{pq}\sum_{\rho\sigma}\bra{\phi_{q}} \hat{h}\ket{\phi_{p}} \braket{\sigma|\rho}a^{q_{\sigma}}_{p_{\rho}}=\sum_{pq}\sum_{\rho=\alpha,\beta}\bra{\phi_{q}} \hat{h}\ket{\phi_{p}}a^{q_{\rho}}_{p_{\rho}}\\
&=\sum_{pq}\bra{\phi_{q}} \hat{h}\ket{\phi_{p}}\sum_{\rho=\alpha,\beta}a^{q_{\rho}}_{p_{\rho}}=\sum_{pq}\bra{\phi_{q}} \hat{h}\ket{\phi_{p}}(a^{q_{\alpha}}_{p_{\alpha}}+a^{q_{\beta}}_{p_{\beta}})
\end{align}
where $\rho,\sigma=\{\alpha,\beta\}$ and $\braket{\sigma|\rho}=\delta^{\sigma}_{\rho}$. We can define spin-free equivalent of the one particle replacer as $E^{q}_{p}=a^{q_{\alpha}}_{p_{\alpha}}+a^{q_{\beta}}_{p_{\beta}}$.
The two-particle part of the Hamiltonian is:
\begin{align}
\hat{H}_{2}&=\frac{1}{2}g^{pq}_{rs}a^{rs}_{pq}=\frac{1}{2}\sum_{pqrs}\sum_{\rho\sigma\mu\nu}\braket{\phi_{p}\rho\phi_{q}\sigma|\phi_{r}\mu\phi_{s}\nu}a^{r_{\mu}s_{\nu}}_{p_{\rho}q_{\sigma}}\\
&=\frac{1}{2}\sum_{pqrs}\sum_{\rho\sigma\mu\nu}\braket{\phi_{p}\phi_{q}|\phi_{r}\phi_{s}}\braket{\rho|\sigma}\braket{\mu|\nu}a^{r_{\mu}s_{\nu}}_{p_{\rho}q_{\sigma}}=\frac{1}{2}\sum_{pqrs}\braket{\phi_{p}\phi_{q}|\phi_{r}\phi_{s}}\sum_{\rho\sigma}a^{r_{\rho}s_{\sigma}}_{p_{\rho}q_{\sigma}}\\
&=\frac{1}{2}\sum_{pqrs}\braket{\phi_{p}\phi_{q}|\phi_{r}\phi_{s}}(a^{r_{\alpha}s_{\alpha}}_{p_{\alpha}q_{\alpha}}+a^{r_{\alpha}s_{\beta}}_{p_{\alpha}q_{\beta}}+a^{r_{\beta}s_{\alpha}}_{p_{\beta}q_{\alpha}}+a^{r_{\beta}s_{\beta}}_{p_{\beta}q_{\beta}})
\end{align}
where we define two-electron replacer $E^{rs}_{pq}=a^{r_{\alpha}s_{\alpha}}_{p_{\alpha}q_{\alpha}}+a^{r_{\alpha}s_{\beta}}_{p_{\alpha}q_{\beta}}+a^{r_{\beta}s_{\alpha}}_{p_{\beta}q_{\alpha}}+a^{r_{\beta}s_{\beta}}_{p_{\beta}q_{\beta}}$.
Spin-free Hamiltonian is $\hat{H}=h^{p}_{q}E^{q}_{p}+\frac{1}{2}g^{pq}_{rs}E^{rs}_{pq}$. One-particle part of the Hamiltonian is:
\begin{align}
\hat{H}_{1}&=h^{p}_{q}E^{q}_{p}=h^{p}_{q}(\tilde{E}^{q}_{p}+\delta^{q}_{p}\delta_{p \in i}n_{i})=h^{p}_{q}\tilde{E}^{q}_{p}+2\sum_{i}h^{i}_{i}
\end{align}
where $n_{i}$ is number of electrons in occupied orbital i. For closed-shell systems $n_{i}=2$.
The two-particle part of the Hamiltonian:
\begin{align}
\hat{H}_{2}&=\frac{1}{2}g^{pq}_{rs}E^{rs}_{pq}\\\nonumber
&=\frac{1}{2}g^{pq}_{rs}(\tilde{E}^{rs}_{pq}+\tilde{E}^{r}_{p}\delta^{s}_{q}\delta_{q \in i}n_{i})+\tilde{E}^{s}_{q}\delta^{r}_{p}\delta_{p \in i}n_{i}-\tilde{E}^{r}_{q}\delta^{s}_{p}\delta_{p \in i}n_{i}/2-\tilde{E}^{s}_{p}\delta^{r}_{q}\delta_{q \in i}n_{i}/2\\\nonumber
&+\delta^{s}_{q}\delta^{r}_{p}\delta_{q \in i}\delta_{p \in j}n_{i}n_{j}-\delta^{s}_{p}\delta^{r}_{q}\delta_{q \in i}\delta_{p \in j}n_{i}n_{j}/2\\\nonumber
&=\frac{1}{2}g^{pq}_{rs}\tilde{E^{rs}_{pq}}+2g^{ip}_{iq}\tilde{E}^{q}_{p}-g^{ip}_{qi}\tilde{E}^{q}_{p}+2g^{ij}_{ij}-g^{ij}_{ji}
\end{align}
Together, these two contributions to total Hamiltonian in normal-ordered form gives:
\begin{align}
\hat{H}=(h^{p}_{q}+2g^{ip}_{iq}-g^{pi}_{iq})\tilde{E}^{q}_{p}+\frac{1}{2}g^{pq}_{rs}\tilde{E}^{rs}_{pq}+2h^{i}_{i}+2g^{ij}_{ij}-g^{ji}_{ij}
\end{align}
with $\hat{F}_{N}=(h^{p}_{q}+2g^{ip}_{iq}-g^{pi}_{iq})\tilde{E}^{q}_{p}$, $\hat{W}_{N}=\frac{1}{2}g^{pq}_{rs}\tilde{E}^{rs}_{pq}$ and $E_{\text{HF}}=2h^{i}_{i}+2g^{ij}_{ij}-g^{ji}_{ij}$.
\section{M{\o}ller-Plesset second-order perturbation theory}
In this section we will apply machinery developed in the previous sections for derivation of the M{\o}ller-Plesset second-order perturbation theory equations. We will tackle this problem using two different, by minimizing Hylleraas functional and via first-order wave-equations. We will do that for the spin-orbital and spin-free formalism.
\subsection{Minimization of Hylleraas functional}
Hylleraas second-order functional is defined by:
\begin{align}
H^{(2)}=2\bra{0}\hat{W}_{N}\ket{1}+\bra{1}\hat{F}_{N}\ket{1}
\end{align}
with the $\ket{0}=\ket{\Phi_{0}}=\ket{\text{HF}}$ while the first-order wave-function is defined by: $\ket{1}=\hat{T}\ket{0}=\frac{1}{4}t^{ij}_{ab}\tilde{a}^{ab}_{ij}$.
Rules for generalized Wick's theorem in spin-orbital form are that every hole contraction and every closed loop will give one negative sign. First part of the Hylleraas functional can be resolved as follows:
\begin{align}
\bra{0}\hat{W}_{N}\ket{1}=\bra{0}\frac{1}{4}\bar{g}^{pq}_{rs}\tilde{a}^{rs}_{pq}\frac{1}{4}t^{ij}_{ab}\tilde{a}^{ab}_{ij}\ket{0}=\frac{1}{16}\bar{g}^{pr}_{rs}t^{ij}_{ab}\bra{0}\tilde{a}^{rs}_{pq}\tilde{a}^{ab}_{ij}\ket{0}
\end{align}
Only fully contracted terms will give result different than zero.
\begin{align}
\tilde{a}^{rs}_{pq}\tilde{a}^{ab}_{ij}&=\delta^{r}_{i}\delta^{s}_{j}\delta^{a}_{p}\delta^{b}_{q}\\
\tilde{a}^{rs}_{pq}\tilde{a}^{ab}_{ij}&=-\delta^{r}_{i}\delta^{s}_{j}\delta^{b}_{p}\delta^{a}_{q}\\
\tilde{a}^{rs}_{pq}\tilde{a}^{ab}_{ij}&=-\delta^{s}_{i}\delta^{r}_{j}\delta^{a}_{p}\delta^{b}_{q}\\
\tilde{a}^{rs}_{pq}\tilde{a}^{ab}_{ij}&=\delta^{r}_{i}\delta^{s}_{j}\delta^{a}_{q}\delta^{b}_{p}
\end{align}
giving
\begin{align}
\bra{0}\hat{W}_{N}\ket{1}=\frac{1}{16}t^{ij}_{ab}(\bar{g}^{ab}_{ij}-\bar{g}^{ba}_{ij}-\bar{g}^{ab}_{ji}+\bar{g}^{ba}_{ji})=\frac{1}{16}t^{ij}_{ab}(\bar{g}^{ab}_{ij}
+\bar{g}^{ab}_{ij}+\bar{g}^{ab}_{ij}+\bar{g}^{ab}_{ij})=\frac{1}{4}t^{ij}_{ab}\bar{g}^{ab}_{ij}
\end{align}
Finally, first part of the Hyllearaas functional contribution will be:
\begin{align}
2\bra{0}\hat{W}_{N}\ket{1}=\frac{1}{2}t^{ij}_{ab}\bar{g}^{ab}_{ij}
\end{align}
The second part of the Hylleraas functional is more involved due to more possible contractions that may occur. We can resolve matrix elements as:
\begin{align}
\bra{1}\hat{F}_{N}\ket{1}=\bra{0}\hat{T}^{\dagger}\hat{F}_{N}\hat{T}\ket{0}=\bra{0}\frac{1}{4}t^{cd}_{kl}\tilde{a}^{kl}_{cd}F^{p}_{q}\tilde{a}^{p}_{q}\frac{1}{4}t^{ij}_{ab}\tilde{a}^{ab}_{ij}\ket{0}=\frac{1}{16}t^{cd}_{kl}F^{p}_{q}t^{ij}_{ab}\bra{0}\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}\ket{0}
\end{align}
with $\hat{T}=\frac{1}{4}t^{ij}_{ab}\tilde{a}^{ab}_{ij}$, $\hat{T}^{\dagger}=\frac{1}{4}t^{cd}_{kl}\tilde{a}^{kl}_{cd}$ and $\hat{F}_{N}=F^{q}_{p}\tilde{a}^{p}_{q}$. As before, only fully contracted terms will contribute to the final result that may be written as:
\begin{align}
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= +\delta^{p}_{i}\delta^{k}_{j}\delta^{l}_{q}\delta^{a}_{c}\delta^{b}_{d}t^{cd}_{kl}F^{q}_{p}=t^{ab}_{jl}F^{l}_{i}=-t^{ab}_{kj}F^{k}_{i}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= -\delta^{p}_{i}\delta^{k}_{j}\delta^{l}_{q}\delta^{b}_{c}\delta^{a}_{d}t^{cd}_{kl}F^{q}_{p}=-t^{ba}_{jl}F^{l}_{i}=-t^{ab}_{kj}F^{k}_{i}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= -\delta^{p}_{i}\delta^{l}_{j}\delta^{k}_{q}\delta^{a}_{c}\delta^{b}_{d}t^{cd}_{kl}F^{q}_{p}=-t^{ab}_{kj}F^{k}_{i}=-t^{ab}_{kj}F^{k}_{i}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= +\delta^{p}_{i}\delta^{l}_{j}\delta^{k}_{q}\delta^{b}_{c}\delta^{a}_{d}t^{cd}_{kl}F^{q}_{p}=t^{ba}_{kj}F^{k}_{i}=-t^{ab}_{kj}F^{k}_{i}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= -\delta^{p}_{j}\delta^{k}_{i}\delta^{l}_{q}\delta^{a}_{c}\delta^{b}_{d}t^{cd}_{kl}F^{q}_{p}=-t^{ab}_{il}F^{l}_{j}=-t^{ab}_{ik}F^{k}_{j}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=+ \delta^{p}_{j}\delta^{k}_{i}\delta^{l}_{q}\delta^{a}_{d}\delta^{b}_{c}t^{cd}_{kl}F^{q}_{p}=t^{ba}_{il}F^{l}_{j}=-t^{ab}_{ik}F^{k}_{j}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&= \delta^{p}_{j}\delta^{l}_{i}\delta^{k}_{q}\delta^{a}_{c}\delta^{b}_{d}t^{cd}_{kl}F^{q}_{p}=-t^{ab}_{ki}F^{k}_{j}=-t^{ab}_{ik}F^{k}_{j}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{j}\delta^{l}_{i}\delta^{k}_{q}\delta^{a}_{d}\delta^{b}_{c}t^{cd}_{kl}F^{q}_{p}=-t^{ba}_{ki}F^{k}_{j}=-t^{ab}_{ik}F^{k}_{j}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{c}\delta^{a}_{d}\delta^{b}_{q}\delta^{k}_{i}\delta^{l}_{j}t^{cd}_{kl}F^{q}_{p}=-t^{ca}_{ij}F^{b}_{c}=t^{ac}_{ij}F^{b}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=+ \delta^{p}_{c}\delta^{a}_{d}\delta^{b}_{q}\delta^{l}_{i}\delta^{k}_{j}t^{cd}_{kl}F^{q}_{p}=t^{ca}_{ji}F^{b}_{c}=t^{cb}_{ij}F^{a}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=+ \delta^{p}_{c}\delta^{b}_{d}\delta^{a}_{q}\delta^{k}_{i}\delta^{l}_{j}t^{cd}_{kl}F^{q}_{p}=t^{cb}_{ij}F^{a}_{c}=t^{cb}_{ij}F^{a}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{c}\delta^{b}_{d}\delta^{a}_{q}\delta^{l}_{i}\delta^{k}_{j}t^{cd}_{kl}F^{q}_{p}=-t^{cb}_{ji}F^{a}_{c}=t^{cb}_{ij}F^{a}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=+ \delta^{p}_{d}\delta^{a}_{c}\delta^{b}_{q}\delta^{k}_{i}\delta^{l}_{j}t^{cd}_{kl}F^{q}_{p}=t^{ad}_{ij}F^{b}_{d}=t^{ac}_{ij}F^{b}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{d}\delta^{a}_{c}\delta^{b}_{q}\delta^{k}_{j}\delta^{l}_{i}t^{cd}_{kl}F^{q}_{p}=-t^{ad}_{ji}F^{b}_{d}=t^{ac}_{ij}F^{b}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{d}\delta^{b}_{c}\delta^{b}_{q}\delta^{k}_{i}\delta^{l}_{j}t^{cd}_{kl}F^{q}_{p}=-t^{bd}_{ij}F^{a}_{d}=t^{cb}_{ij}F^{a}_{c}\\
\tilde{a}^{kl}_{cd}\tilde{a}^{p}_{q}\tilde{a}^{ab}_{ij}t^{cd}_{kl}F^{q}_{p}&=- \delta^{p}_{d}\delta^{b}_{c}\delta^{a}_{q}\delta^{k}_{j}\delta^{l}_{i}t^{cd}_{kl}F^{q}_{p}=t^{bd}_{ji}F^{a}_{d}=t^{cb}_{ij}F^{a}_{c}
\end{align}
giving the
\begin{align}
\bra{1}\hat{F}_{N}\ket{1}=\frac{1}{4}t^{ij}_{ab}(t^{ac}_{ij}F^{b}_{c}+t^{cb}_{ij}F^{a}_{c}-t^{ab}_{kj}F^{ki}-t^{ab}_{ik}F^{k}_{j})
\end{align}
The final for of the second-order Hylleraas functional is now:
\begin{align}
H^{(0)}(\ket{1})=\frac{1}{4}t^{ij}_{ab}(2\bar{g}^{ab}_{ij}+t^{ac}_{ij}F^{b}_{c}+t^{cb}_{ij}F^{a}_{c}-t^{ab}_{kj}F^{ki}-t^{ab}_{ik}F^{k}_{j})
\end{align}
To find optimal amplitudes, we need to minimize the Hylleraas functional as:
\begin{align}
\frac{\partial H^{(2)}}{\partial t^{mn}_{ef}}=0
\end{align}
Thus the first term will be of the form:
\begin{align}
\frac{\partial }{\partial t^{mn}_{ef}}\bigg(\frac{1}{2}t^{ij}_{ab}\bar{g}^{ab}_{ij}\bigg)=\frac{1}{2}\delta^{i}_{m}\delta^{j}_{n}\delta^{a}_{l}\delta^{b}_{f}\bar{g}^{ab}_{ij}=\frac{1}{2}\bar{g}^{ef}_{mn}=\frac{1}{2}\bar{g}^{ab}_{ij}
\end{align}
The second term will be:
\begin{align}
\frac{\partial }{\partial t^{mn}_{ef}}\bigg(\frac{1}{4}t^{ij}_{ab}t^{ac}_{ij}F^{b}_{c}\bigg)&=\frac{1}{4}\bigg(\frac{\partial t^{ij}_{ab}}{\partial t^{mn}_{ef}}t^{ac}_{ij}+t^{ij}_{ab}\frac{\partial t^{ac}_{ij}}{\partial t^{mn}_{ef}}\bigg)F^{b}_{c}=\frac{1}{4}F^{b}_{c}(\delta^{i}_{m}\delta^{j}_{n}\delta^{a}_{l}\delta^{b}_{f}t^{ac}_{ij}+t^{ij}_{ab}\delta^{a}_{e}\delta^{c}_{f}\delta^{i}_{m}\delta^{j}_{n})\\\nonumber
&=\frac{1}{4}(t^{ec}_{mn}F^{f}_{c}+t^{mn}_{eb}F^{b}_{f})=\frac{1}{2}t^{ec}_{mn}F^{f}_{c}=\frac{1}{2}t^{ac}_{ij}F^{b}_{c}
\end{align}
The remaining terms are resolved in the similar manner as the previous one.
Finally, we can write amplitude equation of also known as MP1 equations as:
\begin{align}
\frac{\partial H^{(2)}}{\partial t}=\frac{1}{2}\bar{g}^{ab}_{ij}+\frac{1}{2}t^{cb}_{ij}F^{a}_{c}+\frac{1}{2}t^{ac}_{ij}F^{b}_{c}-\frac{1}{2}t^{ab}_{kj}F^{i}_{k}-\frac{1}{2}t^{ab}_{ik}F^{j}_{k}=0
\end{align}
as:
\begin{align}
R^{ab}_{ij}=\bar{g}^{ab}_{ij}+t^{cb}_{ij}F^{a}_{c}+t^{ac}_{ij}F^{b}_{c}-t^{ab}_{kj}F^{i}_{k}-t^{ab}_{ik}F^{j}_{k}=0
\end{align}
\subsection{R-S perturbation theory}
In order to derive the amplitude equation, we can start from the MP1 equations that we have derived in the context of the R-S perturbation theory:
\begin{align}
\hat{H}^{(1)}\ket{0}+\hat{H}^{(0)}\ket{1}=E^{(1)}\ket{0}+E^{(0)}\ket{1}
\end{align}
with $\hat{H}=\hat{H}^{(0)}+\hat{H}^{(1)}=E_{\text{HF}}+\hat{F}_{N}+\hat{W}_{N}$ where we define $\hat{H}^{(0)}=E_{\text{HF}}+\hat{F}_{N}$ and $\hat{H}^{(1)}=\hat{W}_{N}$. Now MP1 equations reads as:
\begin{align}
\hat{W}_{N}\ket{0}+(E_{\text{HF}}+\hat{F}_{N})\ket{1}=E^{(1)}\ket{0}+E^{(0)}\ket{1}
\end{align}
which can be solved by projection on the right hand side onto the space of doubly excited determinants giving:
\begin{align}
\bra{^{kl}_{cd}}\hat{W}_{N}\ket{0}+\bra{^{kl}_{cd}}\hat{F}_{N}\ket{1}=0
\end{align}
By resolving the matrix elements using the Wick's theorem rules, we arrive at the amplitude equation expression:
\begin{align}
R^{ab}_{ij}=\bar{g}^{ab}_{ij}+t^{cb}_{ij}F^{a}_{c}+t^{ac}_{ij}F^{b}_{c}-t^{ab}_{kj}F^{i}_{k}-t^{ab}_{ik}F^{j}_{k}=0
\end{align}
\subsection{Minimization of Hylleraas functional in the spin-free form}
We star the derivation of the MP1 amplitude equations from the second-order Hylleraas functional
\begin{align}
H^{(0)}=2\bra{0}\hat{W}_{N}\ket{1}+\bra{1}\hat{F}_{N}\ket{1}
\end{align}
where $\ket{1}=\frac{1}{2}t^{ij}_{ab}E^{ab}_{ij}$, $\hat{W}_{N}=]\frac{1}{2}g^{pq}_{rs}\tilde{E^{rs}_{pq}}$ and $\hat{F}_{N}=F^{p}_{q}\tilde{E}^{q}_{p}$ where $\ket{1}$ is already in normal-ordered form. The rules for Wick's theorem in the spin-free formalism are that every hole contraction contributes with one minus sign and every closed loop contribute with -2. Having that in mind, we can resolve the matrix elements of the Hylleraas functional staring from the first contribution:
\begin{align}
\bra{0}\hat{W}_{N}\ket{1}=\bra{0}\frac{1}{2}g^{pq}_{rs}\tilde{E}^{rs}_{pq}\frac{1}{2}t^{ij}_{ab}E^{ab}_{ij}\ket{0}=\frac{1}{4}g^{pq}_{rs}t^{ij}_{ab}\bra{0}\tilde{E}^{rs}_{pq}E^{ab}_{ij}\ket{0}
\end{align}
then the elements inside brackets can be resolved as:
\begin{align}
\tilde{E^{rs}_{pq}}\tilde{E}^{ab}_{ij}&=+4\delta^{r}_{i}\delta^{s}_{j}\delta^{a}_{p}\delta^{b}_{q}\\
\tilde{E^{rs}_{pq}}\tilde{E}^{ab}_{ij}&=-2\delta^{r}_{i}\delta^{s}_{j}\delta^{b}_{p}\delta^{a}_{q}\\
\tilde{E^{rs}_{pq}}\tilde{E}^{ab}_{ij}&=-2\delta^{s}_{i}\delta^{r}_{j}\delta^{a}_{p}\delta^{b}_{q}\\
\tilde{E^{rs}_{pq}}\tilde{E}^{ab}_{ij}&=+4\delta^{s}_{i}\delta^{r}_{j}\delta^{b}_{p}\delta^{a}_{q}
\end{align}
Inserting these 4 expressions, we obtain:
\begin{align}
\bra{0}\hat{W}_{N}\ket{1}=\frac{1}{4}(8g^{ab}_{ij}t^{ij}_{ab}-4g^{ba}_{ij}t^{ij}_{ab})=(2g^{ab}_{ij}-g^{ba}_{ij})t^{ij}_{ab}=\bar{g}^{ab}_{ij}t^{ij}_{ab}
\end{align}
where $\bar{g}^{ab}_{ij}=2g^{ab}_{ij}-g^{ba}_{ij}$ antisymmertized two-electron integrals equivalent in the spin-free formalism. We used the same notation for the spin-orbital formalism but now context is different. From now on, we will only use spin-free formalism in derivation of the F12 methods.
The resolution of the second part of the Hylleraas functional $\bra{1}\hat{F}_{N}\ket{1}$ is:
\begin{align}
\bra{1}\hat{F}_{N}\ket{1}=\bra{0}\hat{T}^{\dagger}\hat{F}_{N}\hat{T}\ket{0}=\frac{1}{4}t^{cd}_{kl}F^{p}_{q}t^{ij}_{ab}\bra{0}\tilde{E}^{kl}_{cd}\tilde{F}^{q}_{p}\tilde{E}^{ab}_{ij}\ket{0}
\end{align}
The expression inside the brackets can be resolved as:
\begin{align}
\tilde{E}^{kl}_{cd}\tilde{F}^{q}_{p}\tilde{E}^{ab}_{ij}=-4\delta^{q}_{i}\delta^{l}_{j}\delta^{k}_{p}\delta^{a}_{c}\delta^{b}_{d}\\
\tilde{E}^{kl}_{cd}\tilde{F}^{q}_{p}\tilde{E}^{ab}_{ij}=+2\delta^{q}_{i}\delta^{l}_{j}\delta^{k}_{p}\delta^{b}_{c}\delta^{a}_{d}
\end{align}
with 16 elements in total. After resolving matrix elements, we arrive at the expression for the Hylleraas expression:
\begin{align}
H^{(0)}&=2\bra{0}\hat{W}_{N}\ket{1}+\bra{1}\hat{F}_{N}\ket{1}=(4g^{ab}_{ij}-2g^{ba}_{ij})t^{ij}_{ab}\\\nonumber
&+2t^{ij}_{ab}t^{ac}_{ij}F^{b}_{c}-t^{ij}_{ab}t^{ca}_{ij}F^{b}_{c}+2t^{ij}_{ab}t^{cb}_{ij}F^{a}_{c}-t^{ij}_{ab}t^{bc}_{ij}F^{a}_{c}-2t^{ij}_{ab}t^{ab}_{kj}F^{k}_{i}+t^{ij}_{ab}t^{ba}_{kj}F^{k}_{i}-2t^{ij}_{ab}t^{ab}_{ik}F^{k}_{j}+t^{ij}_{ab}t^{ba}_{ik}F^{k}_{j}
\end{align}
Minimization of the Hyllearaas function with the respect to the amplitudes, as was derived in the previous section gives the set of MP1 amplitude equations in spin-free formalism:
\begin{align}
R^{ij}_{ab}=\bar{g}^{ij}_{ab}
+\bar{t}^{ij}_{ac}F^{c}_{b}+\bar{t}^{ij}_{cb}F^{c}_{a}-\bar{t}^{kj}_{ab}F^{i}_{k}-\bar{t}^{ik}_{ab}F^{j}_{k}
\end{align}
with $\bar{t}^{ij}_{ab}=2t^{ij}_{ab}-t^{ij}_{ba}$. By solving the linear system of equations, we obtain optimized amplitudes that can be used for evaluation of te second order energy contribution also know as MP2 energy as:
\begin{align}
E^{(2)}=\bra{0}\hat{H}^{(1)}\ket{1}=\bra{0}\hat{W}_{N}\ket{1}=\bar{g}^{ab}_{ij}t^{ij}_{ab}=g^{ab}_{ij}\bar{t}^{ij}_{ab}
\end{align}
Selecting the canonical orbitals, in which Fock matrix has diagonal form, we arrive as the well known expression for the MP2 energy correction as:
\begin{align}
E^{(2)}=\sum_{ijab}\frac{(2g^{ab}_{ij}-g^{ba}_{ij})t^{ij}_{ab}}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}
\end{align}
\section{Explicitly correlated methods}
\subsection{MP2-F12 method}
Within explicitly correlated formalism, the first-order wave function in the spin-free formalism is
\begin{align}
\ket{1}=\ket{1_{\text{MP2}}}+\ket{1_{\text{F12}}}=\frac{1}{2}t^{ij}_{ab}\tilde{E}^{ab}_{ij}\ket{0}+\frac{1}{2}\tilde{R}^{ij}_{\alpha\beta}\tilde{E}^{\alpha\beta}_{ij}\ket{0}
\end{align}
where $\tilde{R}^{ij}_{\alpha\beta}$ is matrix element of the explicit-correlation factor.
The Hylleraas functional for the F12 augmented MP1 wave function is
\begin{align}
H^{(2)}_{\text{MP2-F12}}&=\bra{1}\hat{F}_{N}\ket{1}+2\bra{0}\hat{W}_{N}\ket{1}\\
&=\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{MP2}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{MP2}}}+\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}\\
&+\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{MP2}}}+\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}
\end{align}
having the $H^{(2)}_{\text{MP2}}=\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{MP2}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{MP2}}}$ and using the adjoint property of the matrix elements, we have:
\begin{align}
H^{(2)}_{\text{MP2-F12}}&=H^{(2)}_{\text{MP2}}+2\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}+\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}
\end{align}
As we have showed in the previous chapter, the Hylleraas functional for the MP1 wave function in the spin-free formalism is $2\bar{t}^{ij}_{ab}g^{ab}_{ij}
+\bar{t}^{ij}_{ab}t_{ij}^{ac}F_{c}^{b}+\bar{t}^{ij}_{ab}t_{ij}^{cb}F_{c}
^{a}-\bar{t}^{ij}_{ab}t_{kj}^{ab}F_{i}^{k}-\bar{t}^{ij}_{ab}t_{ik}^{ab}F_{j}^{k}$. The only thing that remains is to resolve the following three matrix elements $\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}$, $\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}$ and $\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}$. The resolution of the $\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}$ is as follows:
\begin{align}
\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}=\frac{1}{4}g^{pq}_{rs}\tilde{R}^{ij}_{\alpha\beta}\bra{0}\tilde{E}^{rs}_{pq}\tilde{E}^{\alpha\beta}_{ij}\ket{0}=(2g^{\alpha\beta}_{ij}-g^{\alpha\beta}_{ji})\tilde{R}^{ij}_{\alpha\beta}=2V^{ij}_{ij}-V^{ji}_{ij}=\bar{V}^{ij}_{ij}
\end{align}
where $V^{ij}_{ij}=g^{\alpha\beta}_{ij}\tilde{R}^{ij}_{\alpha\beta}$. Here, the summation over the $\alpha$ and $\beta$ indices is assumed.
The term $\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}$ is evaluated as follows:
\begin{align}
\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}&=\frac{1}{4}t^{ab}_{ij}F^{p}_{q}\tilde{R}^{kl}_{\alpha\beta}\bra{0}\tilde{E}^{ij}_{ab}\tilde{E}^{p}_{q}\tilde{E}^{\alpha\beta}_{kl}\ket{0}
\end{align}
resolution of the matrix elements will give:
\begin{align}
\tilde{E}^{ij}_{ab}\tilde{E}^{p}_{q}\tilde{E}^{\alpha\beta}_{kl}=-2\delta^{i}_{k}\delta^{j}_{l}\delta^{q}_{a}\delta^{b}_{\alpha}\delta^{\beta}_{p}=-2F^{\beta}_{a}\tilde{R}^{ij}_{b\beta}=-2F^{\alpha}_{a}\tilde{R}^{ij}_{b\alpha}\\
\tilde{E}^{ij}_{ab}\tilde{E}^{p}_{q}\tilde{E}^{\alpha\beta}_{kl}=+4\delta^{i}_{k}\delta^{j}_{l}\delta^{q}_{a}\delta^{b}_{\beta}\delta^{\alpha}_{p}=+4F^{\alpha}_{a}\tilde{R}^{ij}_{\alpha b}=+4F^{\alpha}_{a}\tilde{R}^{ij}_{\alpha b}\\
\end{align}
There are 8 such contractions. Collecting all of them will give:
\begin{align}
2\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}&=2t^{ab}_{ij}[F^{\alpha}_{a}(2\tilde{R}^{ij}_{\alpha b}-\tilde{R}^{ji}_{\alpha b})+F^{\alpha}_{b}(2\tilde{R}^{ij}_{a\alpha}-\tilde{R}^{ji}_{a\alpha})]\\
&=2\bar{t}^{ab}_{ij}(F^{\alpha}_{a}\tilde{R}^{ij}_{\alpha b}+F^{\alpha}_{b}\tilde{R}^{ij}_{a\alpha})=2\bar{t}^{ab}_{ij}C^{ij}_{ab}
\end{align}
where $\bar{t}^{ab}_{ij}=2t^{ab}_{ij}-t^{ab}_{ji}$ and intermediate $C^{ij}_{ab}=F^{\alpha}_{a}\tilde{R}^{ij}_{\alpha b}+F^{\alpha}_{b}\tilde{R}^{ij}_{a\alpha}$.
Lastly, we resolve $\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}$ matrix elements.
\begin{align}
\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}=\frac{1}{4}\tilde{R}_{ij}^{\alpha\beta}F^{p}_{q}\tilde{R}^{kl}_{\gamma\delta}\bra{0}\tilde{E}^{ij}_{\alpha\beta}\tilde{E}^{q}_{p}\tilde{E}^{\gamma\delta}_{kl}\ket{0}
\end{align}
Furthermore, the expression in brackets will give two intermediates that arise by 2-hole-3-particle and 3-hole-2-particle contractions. Let us first resolve 2-hole-3-particle. This will give 8 different contractions in total, however, we show here only first few:
\begin{align}
\tilde{E}^{ij}_{\alpha\beta}\tilde{E}^{q}_{p}\tilde{E}^{\gamma\delta}_{kl}=-2\delta^{i}_{k}\delta^{j}_{l}\delta^{q}_{\alpha}\delta^{\gamma}_{\beta}\delta^{\delta}_{p}=-2\tilde{R}^{\alpha\beta}_{ij}F^{\delta}_{\alpha}\tilde{R}^{ij}_{\beta\delta}=-2\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ij}_{\beta\gamma}\\
\tilde{E}^{ij}_{\alpha\beta}\tilde{E}^{q}_{p}\tilde{E}^{\gamma\delta}_{kl}=+4\delta^{i}_{k}\delta^{j}_{l}\delta^{q}_{\alpha}\delta^{\delta}_{\beta}\delta^{\gamma}_{p}=+4\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ij}_{\gamma\beta}=+4\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ij}_{\gamma\beta}
\end{align}
Collecting all 8 contributions yields:
\begin{align}
\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}\leftarrow2\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ij}_{\gamma\beta}+2\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\beta}\tilde{R}^{ij}_{\alpha\gamma}-\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ji}_{\gamma\beta}-\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\beta}\tilde{R}^{ji}_{\alpha\gamma}
\end{align}
we can define a new intermediate $B^{ij}_{ij}=\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\alpha}\tilde{R}^{ij}_{\gamma\beta}+\tilde{R}^{\alpha\beta}_{ij}F^{\gamma}_{\beta}\tilde{R}^{ij}_{\alpha\gamma}$ gives $\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}\leftarrow\bar{B}^{ij}_{ij}$ where $\bar{B}^{ij}_{ij}=2B^{ij}_{ij}-B^{ji}_{ij}$. Finally, we can resolve the remaining 8 contributions that arise from 3-hole-2-particle contractions. Here, we will skip derivation of the all 8 contractions and proceed to the final result
\begin{align}
\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}&\leftarrow-[2\tilde{R}^{\alpha\beta}_{ij}\tilde{R}^{kj}_{\alpha\beta}F^{i}_{k}-\tilde{R}^{\alpha\beta}_{ij}\tilde{R}^{jk}_{\alpha\beta}F^{i}_{k}+2\tilde{R}^{\alpha\beta}_{ij}\tilde{R}^{ik}_{\alpha\beta}F^{j}_{k}-\tilde{R}^{\alpha\beta}_{ij}\tilde{R}^{ki}_{\alpha\beta}F^{j}_{k}]\\\nonumber
&=-[(2X^{kj}_{ij}-X^{jk}_{ij})F^{i}_{k}+(2X^{ik}_{ij}-X^{ki}_{ij})F^{j}_{k}]=-[\tilde{X}^{kj}_{ij}F^{i}_{k}+\tilde{X}^{ik}_{ij}F^{j}_{k}]
\end{align}
where matrix elements of intermediate $X$ are defined as $X^{kj}_{ij}=\tilde{R}^{\alpha\beta}_{ij}\tilde{R}^{kj}_{\alpha\beta}$ and $\bar{X}^{kj}_{ij}=2X^{kj}_{ij}-X^{jk}_{ij}$ are antisymmetrized matrix elements in spin-free formalism.
Finally, we can collect all the contributions and write final expression for the second order Hylleraas functional:
\begin{align}
H^{(2)}_{\text{MP2-F12}}=&\bra{1}\hat{F}_{N}\ket{1}+2\bra{0}\hat{W}_{N}\ket{1}\\
=&\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{MP2}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{MP2}}}+\bra{1_{\text{MP2}}}\hat{F}_{N}\ket{1_{\text{F12}}}\\
&+\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{MP2}}}+\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}+2\bra{0}\hat{W}_{N}\ket{1_{\text{F12}}}\\
=&\bar{t}^{ij}_{ab}(g^{ab}_{ij}+C^{ab}_{ij}+\rho^{ab}_{ij})+2\bar{V}^{ij}_{ij}+\bar{B}^{ij}_{ij}-\bar{X}^{kj}_{ij}F^{i}_{k}-\bar{X}^{ik}_{ij}F^{j}_{k}
\end{align}
where $\rho^{ab}_{ij}=\bra{^{ij}_{ab}}\hat{W}_{N}\ket{0}+\bra{^{ij}_{ab}}\hat{F}_{N}\ket{1_{\text{MP2}}}+\bra{^{ij}_{ab}}\hat{F}_{N}\ket{1_{\text{F12}}}$. For optimized amplitudes, the expression $\bar{t}^{ij}_{ab}\rho^{ab}_{ij}$ gives 0 and for such amplitudes $\text{MP2-F12}$ energy expression is:
\begin{align}
E_{\text{MP2-F12}}=\bar{t}^{ij}_{ab}(g^{ab}_{ij}+C^{ab}_{ij})+2\bar{V}^{ij}_{ij}+\bar{B}^{ij}_{ij}-\bar{X}^{kj}_{ij}F^{i}_{k}-\bar{X}^{ik}_{ij}F^{j}_{k}
\end{align}
\subsection{Perturbative F12 correction to the CCSD energy}
The energy correction of the perturbative F12 approach is obtained by evaluating the following Hylleraas functional:
\begin{align}
E_{(2)_{\overline{\text{F12}}}}=\bra{1_{\text{F12}}}\hat{H}^{(0)}\ket{1_{\text{F12}}}+\bra{0}\hat{H}^{(1)}\ket{1_{\text{F12}}}+\bra{1_{\text{F12}}}\hat{H}^{(1)}\ket{0}
\end{align}
with $\ket{0}=\ket{\Psi_{0}}=\ket{\text{HF}}$ and $\bra{0}=\bra{\Psi_{0}}(1+\hat{T}^{\dagger})$.
Zeroth-order Hamiltonian we take normal-ordered Fock operator while first-order Hamiltonian is normal-ordered similarity transformed Hamiltonian $\bar{H}_{N}$. This, second and third therms would yield many contributions, however, we will only consider contributions that are liner in amplitude expansion of the normal-ordered similarity transformed Hamiltonian. Thus, the first term will give familiar expression that we have derived in the previous section.
\begin{align}
\mathcal{B}^{ij}_{ij}=\bra{1_{\text{F12}}}\hat{F}_{N}\ket{1_{\text{F12}}}
=\bar{B}^{ij}_{ij}-\bar{X}^{kj}_{ij}F^{i}_{k}-\bar{X}^{ik}_{ij}F^{j}_{k}
\end{align}
Let us define linear contributions to the normal-ordered similarity-transformed Hamiltonian:
\begin{align}
\bar{H}_{N}=\hat{F}_{N}+\hat{W}_{N}+\hat{F}_{N}\hat{T}_{1}+\hat{W}_{N}\hat{T}_{1}+\hat{F}_{N}\hat{T}_{2}+\hat{W}_{N}\hat{T}_{2}
\end{align}
Resolution of the third term will give:
\begin{align}
\bra{1_{\text{F12}}}\bar{H}_{N}\ket{0}
=&\bra{1_{\text{F12}}}\hat{F}_{N}\ket{0}+\bra{1_{\text{F12}}}\hat{W}_{N}\ket{0}+\bra{1_{\text{F12}}}\hat{F}_{N}\hat{T}_{1}\ket{0}+\bra{1_{\text{F12}}}\hat{W}_{N}\hat{T}_{1}\ket{0}\\\nonumber
&+\bra{1_{\text{F12}}}\hat{F}_{N}\hat{T}_{2}\ket{0}+\bra{1_{\text{F12}}}\hat{W}_{N}\hat{T}_{2}\ket{0}
\end{align}
Now, let us analyze each contribution that may arise from this term. The contribution $\bra{1_{\text{F12}}}\hat{F}_{N}\ket{0}$ will give 0 since no fully contracted contribution can be constructed. Second contribution, $\bra{1_{\text{F12}}}\hat{W}_{N}\ket{0}$, is familiar $\bar{V}^{ij}_{ij}$. The third term, $\bra{1_{\text{F12}}}\hat{F}_{N}\hat{T}_{1}\ket{0}$, is also zero due to Generalized-Brillouin condition (GBC) that states that $F^{i}_{\alpha}=0$. The contribution $\bra{1_{\text{F12}}}\hat{W}_{N}\hat{T}_{1}\ket{0}$ will yield $\bar{V}^{ia}_{ij}t^{j}_{a}+\bar{V}^{aj}_{ij}t^{i}_{a}$. The contribution $\bra{1_{\text{F12}}}\hat{F}_{N}\hat{T}_{2}\ket{0}$ is familiar $C$ intermediate contracted with double amplitudes $\bar{C}^{ab}_{ij}t^{ij}_{ab}$. Lastly, $\bra{1_{\text{F12}}}\hat{W}_{N}\hat{T}_{2}\ket{0}$ will give $\bar{V}^{ab}_{ij}t^{ij}_{ab}$. Finally, we can write whole expression as:
\begin{align}
\bra{1_{\text{F12}}}\bar{H}_{N}\ket{0}
=\bar{V}^{ij}_{ij}+\bar{V}^{ia}_{ij}t^{j}_{a}+\bar{V}^{aj}_{ij}t^{i}_{a}+\bar{C}^{ab}_{ij}t^{ij}_{ab}+\bar{V}^{ab}_{ij}t^{ij}_{ab}
\end{align}
Last contribution form the energy expression to be resolved is:
\begin{align}
\bra{0}\hat{H}^{(1)}\ket{1_{\text{F12}}}=\bra{0}\bar{H}_{N}\ket{1_{\text{F12}}}+\bra{0}\hat{T}_{1}^{\dagger}\bar{H}_{N}\ket{1_{\text{F12}}}+\bra{0}\hat{T}_{2}^{\dagger}\bar{H}_{N}\ket{1_{\text{F12}}}
\end{align}
Taking into consideration only terms that will be at most linear in amplitudes and GBC, this term will give same contributions as previous one.
By defining intermediate $\mathcal{V}$ as:
\begin{align}
\mathcal{V}^{ij}_{ij}=\bar{V}^{ij}_{ij}+\bar{V}^{ia}_{ij}t^{j}_{a}+\bar{V}^{aj}_{ij}t^{i}_{a}+(\bar{V}^{ab}_{ij}+\bar{C}^{ab}_{ij})t^{ij}_{ab}
\end{align}
then the energy contribution in spin-free formalism is defined as:
\begin{align}
E_{(2)_{\overline{\text{F12}}}}=2\mathcal{V}^{ij}_{ij}+\mathcal{B}^{ij}_{ij}
\end{align}
\end{document}