forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
profile_gpt2.cu
73 lines (59 loc) · 2.84 KB
/
profile_gpt2.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
This code is a convenience tool for profiling the CUDA kernels in the training
loop of train_gpt2.cu. Compile:
make profile_gpt2cu NO_MULTI_GPU=1
And then e.g. use ncu from NVIDIA. The CLI docs for example:
https://docs.nvidia.com/nsight-compute/NsightComputeCli/
TLDR run like:
sudo ncu --set full --import-source yes -o profile -f ./profile_gpt2cu
This:
- `--set full` means we'll collect A LOT of metrics. take out for less
- `--import-source yes` means we'll get the source code in the profile
- `-o profile` writes the results into file profile.ncu-rep
- `-f` forces overwrite of the profile.ncu-rep file
- `./profile_gpt2cu` is the executable we want to profile
This writes results into profile.ncu-rep output file.
You can open this up in NVIDIA Nsight Compute UI.
For example, I have NVIDIA Nsight Compute installed on my Mac, and I rsync
the profile.ncu-rep from a cloud box to local to pretty view.
*/
#define TESTING
#include "train_gpt2.cu"
int main(int argc, char *argv[]) {
char nccl_init_method[256] = "mpi"; // "tcp" or "fs" or "mpi"
int num_processes = -1; // doesn't matter when using MPI
int process_rank = -1; // doesn't matter when using MPI
int gpus_per_node = -1; // doesn't matter when using MPI
char server_ip[256] = ""; // doesn't matter when using MPI
char fs_path[256] = ""; // doesn't matter when using MPI
multi_gpu_config = multi_gpu_config_init(num_processes, process_rank, gpus_per_node, server_ip, fs_path, nccl_init_method);
common_start(true, true);
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_init_common(&model);
gpt2_build_from_checkpoint(&model, "gpt2_124M_bf16.bin");
int B = 24; // if program OOMs decrease this number, e.g. all the way down to 4 or etc
int T = 1024; // if even that OOMs move on to this one. keep them nice and powers of 2
printf("batch size: %d\n", B);
printf("sequence length: %d\n", T);
int* x = (int*)mallocCheck(B * T * sizeof(int));
int* y = (int*)mallocCheck(B * T * sizeof(int));
for(int i = 0; i < B * T; ++i) {
x[i] = i % model.config.vocab_size;
y[i] = i % model.config.vocab_size;
}
// override number of layers to 1 because all layers repeat the same kernels, only profile once
model.config.num_layers = 1;
set_zero_configs(&multi_gpu_config, 0, model.num_parameters);
// do a training step
gpt2_forward(&model, x, B, T);
gpt2_backward_and_reduce(&model, x, y, 1, 0);
float grad_norm = gpt2_calculate_grad_norm(&model, &multi_gpu_config);
float grad_scale = (grad_norm > 1.0f) ? 1.0f / grad_norm : 1.0f;
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.0f, grad_scale, 1, &multi_gpu_config);
cudaCheck(cudaDeviceSynchronize()); // finish all CUDA work to get correct precise timings
// free
gpt2_free(&model);
common_free(model);
return 0;
}