-
Notifications
You must be signed in to change notification settings - Fork 239
/
Copy path02_preprocess.py
69 lines (62 loc) · 2.45 KB
/
02_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python
from sense2vec.util import make_key, make_spacy_key, merge_phrases
import spacy
from spacy.tokens import DocBin
from wasabi import msg
from pathlib import Path
import tqdm
import typer
def main(
# fmt: off
in_file: str = typer.Argument(..., help="Path to input file"),
out_dir: str = typer.Argument(..., help="Path to output directory"),
spacy_model: str = typer.Argument("en_core_web_sm", help="Name of spaCy model to use"),
n_process: int = typer.Option(1, "--n-process", "-n", help="Number of processes (multiprocessing)"),
# fmt: on
):
"""
Step 2: Preprocess text in sense2vec's format
Expects a binary .spacy input file consisting of the parsed Docs (DocBin)
and outputs a text file with one sentence per line in the expected sense2vec
format (merged noun phrases, concatenated phrases with underscores and
added "senses").
Example input:
Rats, mould and broken furniture: the scandal of the UK's refugee housing
Example output:
Rats|NOUN ,|PUNCT mould|NOUN and|CCONJ broken_furniture|NOUN :|PUNCT
the|DET scandal|NOUN of|ADP the|DET UK|GPE 's|PART refugee_housing|NOUN
"""
input_path = Path(in_file)
output_path = Path(out_dir)
if not input_path.exists():
msg.fail("Can't find input file", in_file, exits=1)
if not output_path.exists():
output_path.mkdir(parents=True)
msg.good(f"Created output directory {out_dir}")
nlp = spacy.load(spacy_model)
msg.info(f"Using spaCy model {spacy_model}")
with input_path.open("rb") as f:
doc_bin_bytes = f.read()
doc_bin = DocBin().from_bytes(doc_bin_bytes)
msg.good(f"Loaded {len(doc_bin)} parsed docs")
docs = doc_bin.get_docs(nlp.vocab)
output_file = output_path / f"{input_path.stem}.s2v"
lines_count = 0
words_count = 0
with output_file.open("w", encoding="utf8") as f:
for doc in tqdm.tqdm(docs, desc="Docs", unit=""):
doc = merge_phrases(doc)
words = []
for token in doc:
if not token.is_space:
word, sense = make_spacy_key(token, prefer_ents=True)
words.append(make_key(word, sense))
f.write(" ".join(words) + "\n")
lines_count += 1
words_count += len(words)
msg.good(
f"Successfully preprocessed {lines_count} docs ({words_count} words)",
output_file.resolve(),
)
if __name__ == "__main__":
typer.run(main)