diff --git a/exercises/practice/darts/.docs/instructions.md b/exercises/practice/darts/.docs/instructions.md index 5e57a860..6518201c 100644 --- a/exercises/practice/darts/.docs/instructions.md +++ b/exercises/practice/darts/.docs/instructions.md @@ -1,6 +1,6 @@ # Instructions -Write a function that returns the earned points in a single toss of a Darts game. +Calculate the points scored in a single toss of a Darts game. [Darts][darts] is a game where players throw darts at a [target][darts-target]. @@ -16,7 +16,7 @@ In our particular instance of the game, the target rewards 4 different amounts o The outer circle has a radius of 10 units (this is equivalent to the total radius for the entire target), the middle circle a radius of 5 units, and the inner circle a radius of 1. Of course, they are all centered at the same point — that is, the circles are [concentric][] defined by the coordinates (0, 0). -Write a function that given a point in the target (defined by its [Cartesian coordinates][cartesian-coordinates] `x` and `y`, where `x` and `y` are [real][real-numbers]), returns the correct amount earned by a dart landing at that point. +Given a point in the target (defined by its [Cartesian coordinates][cartesian-coordinates] `x` and `y`, where `x` and `y` are [real][real-numbers]), calculate the correct score earned by a dart landing at that point. ## Credit diff --git a/exercises/practice/darts/.meta/config.json b/exercises/practice/darts/.meta/config.json index bc583451..20df9b93 100644 --- a/exercises/practice/darts/.meta/config.json +++ b/exercises/practice/darts/.meta/config.json @@ -13,6 +13,6 @@ ".meta/example.el" ] }, - "blurb": "Write a function that returns the earned points in a single toss of a Darts game.", + "blurb": "Calculate the points scored in a single toss of a Darts game.", "source": "Inspired by an exercise created by a professor Della Paolera in Argentina" } diff --git a/exercises/practice/flatten-array/.docs/instructions.md b/exercises/practice/flatten-array/.docs/instructions.md index 51bea679..89dacfa3 100644 --- a/exercises/practice/flatten-array/.docs/instructions.md +++ b/exercises/practice/flatten-array/.docs/instructions.md @@ -2,7 +2,7 @@ Take a nested list and return a single flattened list with all values except nil/null. -The challenge is to write a function that accepts an arbitrarily-deep nested list-like structure and returns a flattened structure without any nil/null values. +The challenge is to take an arbitrarily-deep nested list-like structure and produce a flattened structure without any nil/null values. For example: diff --git a/exercises/practice/hello-world/.meta/config.json b/exercises/practice/hello-world/.meta/config.json index 1f39c965..606e41a4 100644 --- a/exercises/practice/hello-world/.meta/config.json +++ b/exercises/practice/hello-world/.meta/config.json @@ -19,7 +19,7 @@ ".meta/example.el" ] }, - "blurb": "The classical introductory exercise. Just say \"Hello, World!\".", + "blurb": "Exercism's classic introductory exercise. Just say \"Hello, World!\".", "source": "This is an exercise to introduce users to using Exercism", "source_url": "https://en.wikipedia.org/wiki/%22Hello,_world!%22_program" } diff --git a/exercises/practice/perfect-numbers/.docs/instructions.md b/exercises/practice/perfect-numbers/.docs/instructions.md index 689a73c0..b2bc82ca 100644 --- a/exercises/practice/perfect-numbers/.docs/instructions.md +++ b/exercises/practice/perfect-numbers/.docs/instructions.md @@ -2,22 +2,38 @@ Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60 - 120 CE) classification scheme for positive integers. -The Greek mathematician [Nicomachus][nicomachus] devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of **perfect**, **abundant**, or **deficient** based on their [aliquot sum][aliquot-sum]. -The aliquot sum is defined as the sum of the factors of a number not including the number itself. +The Greek mathematician [Nicomachus][nicomachus] devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of [perfect](#perfect), [abundant](#abundant), or [deficient](#deficient) based on their [aliquot sum][aliquot-sum]. +The _aliquot sum_ is defined as the sum of the factors of a number not including the number itself. For example, the aliquot sum of `15` is `1 + 3 + 5 = 9`. -- **Perfect**: aliquot sum = number - - 6 is a perfect number because (1 + 2 + 3) = 6 - - 28 is a perfect number because (1 + 2 + 4 + 7 + 14) = 28 -- **Abundant**: aliquot sum > number - - 12 is an abundant number because (1 + 2 + 3 + 4 + 6) = 16 - - 24 is an abundant number because (1 + 2 + 3 + 4 + 6 + 8 + 12) = 36 -- **Deficient**: aliquot sum < number - - 8 is a deficient number because (1 + 2 + 4) = 7 - - Prime numbers are deficient - -Implement a way to determine whether a given number is **perfect**. -Depending on your language track, you may also need to implement a way to determine whether a given number is **abundant** or **deficient**. +## Perfect + +A number is perfect when it equals its aliquot sum. +For example: + +- `6` is a perfect number because `1 + 2 + 3 = 6` +- `28` is a perfect number because `1 + 2 + 4 + 7 + 14 = 28` + +## Abundant + +A number is abundant when it is less than its aliquot sum. +For example: + +- `12` is an abundant number because `1 + 2 + 3 + 4 + 6 = 16` +- `24` is an abundant number because `1 + 2 + 3 + 4 + 6 + 8 + 12 = 36` + +## Deficient + +A number is deficient when it is greater than its aliquot sum. +For example: + +- `8` is a deficient number because `1 + 2 + 4 = 7` +- Prime numbers are deficient + +## Task + +Implement a way to determine whether a given number is [perfect](#perfect). +Depending on your language track, you may also need to implement a way to determine whether a given number is [abundant](#abundant) or [deficient](#deficient). [nicomachus]: https://en.wikipedia.org/wiki/Nicomachus [aliquot-sum]: https://en.wikipedia.org/wiki/Aliquot_sum diff --git a/exercises/practice/queen-attack/.docs/instructions.md b/exercises/practice/queen-attack/.docs/instructions.md index ad7ea954..97f22a0a 100644 --- a/exercises/practice/queen-attack/.docs/instructions.md +++ b/exercises/practice/queen-attack/.docs/instructions.md @@ -8,18 +8,14 @@ A chessboard can be represented by an 8 by 8 array. So if you are told the white queen is at `c5` (zero-indexed at column 2, row 3) and the black queen at `f2` (zero-indexed at column 5, row 6), then you know that the set-up is like so: -```text - a b c d e f g h -8 _ _ _ _ _ _ _ _ 8 -7 _ _ _ _ _ _ _ _ 7 -6 _ _ _ _ _ _ _ _ 6 -5 _ _ W _ _ _ _ _ 5 -4 _ _ _ _ _ _ _ _ 4 -3 _ _ _ _ _ _ _ _ 3 -2 _ _ _ _ _ B _ _ 2 -1 _ _ _ _ _ _ _ _ 1 - a b c d e f g h -``` +![A chess board with two queens. Arrows emanating from the queen at c5 indicate possible directions of capture along file, rank and diagonal.](https://assets.exercism.org/images/exercises/queen-attack/queen-capture.svg) You are also able to answer whether the queens can attack each other. In this case, that answer would be yes, they can, because both pieces share a diagonal. + +## Credit + +The chessboard image was made by [habere-et-dispertire][habere-et-dispertire] using LaTeX and the [chessboard package][chessboard-package] by Ulrike Fischer. + +[habere-et-dispertire]: https://exercism.org/profiles/habere-et-dispertire +[chessboard-package]: https://github.com/u-fischer/chessboard diff --git a/exercises/practice/raindrops/.meta/config.json b/exercises/practice/raindrops/.meta/config.json index 95c82dd3..d47b14f0 100644 --- a/exercises/practice/raindrops/.meta/config.json +++ b/exercises/practice/raindrops/.meta/config.json @@ -16,7 +16,7 @@ ".meta/example.el" ] }, - "blurb": "Convert a number to a string, the content of which depends on the number's factors.", + "blurb": "Convert a number into its corresponding raindrop sounds - Pling, Plang and Plong.", "source": "A variation on FizzBuzz, a famous technical interview question that is intended to weed out potential candidates. That question is itself derived from Fizz Buzz, a popular children's game for teaching division.", "source_url": "https://en.wikipedia.org/wiki/Fizz_buzz" } diff --git a/exercises/practice/two-fer/.docs/instructions.md b/exercises/practice/two-fer/.docs/instructions.md index 37aa7529..adc53487 100644 --- a/exercises/practice/two-fer/.docs/instructions.md +++ b/exercises/practice/two-fer/.docs/instructions.md @@ -2,14 +2,13 @@ Your task is to determine what you will say as you give away the extra cookie. -If your friend likes cookies, and is named Do-yun, then you will say: +If you know the person's name (e.g. if they're named Do-yun), then you will say: ```text One for Do-yun, one for me. ``` -If your friend doesn't like cookies, you give the cookie to the next person in line at the bakery. -Since you don't know their name, you will say _you_ instead. +If you don't know the person's name, you will say _you_ instead. ```text One for you, one for me. diff --git a/exercises/practice/two-fer/.docs/introduction.md b/exercises/practice/two-fer/.docs/introduction.md index 8c124394..5947a223 100644 --- a/exercises/practice/two-fer/.docs/introduction.md +++ b/exercises/practice/two-fer/.docs/introduction.md @@ -5,4 +5,4 @@ Two-for-one is a way of saying that if you buy one, you also get one for free. So the phrase "two-fer" often implies a two-for-one offer. Imagine a bakery that has a holiday offer where you can buy two cookies for the price of one ("two-fer one!"). -You go for the offer and (very generously) decide to give the extra cookie to a friend. +You take the offer and (very generously) decide to give the extra cookie to someone else in the queue.