diff --git a/Makefile b/Makefile index 866f0d8..7f91904 100755 --- a/Makefile +++ b/Makefile @@ -3,7 +3,7 @@ HTML_FILES := $(filter-out docs/_sessionInfo.html, $(HTML_FILES)) R_FILES := $(patsubst %.R, docs/%.html, $(wildcard Part*.R)) .PHONY: all -all : cleanjunk html +all : clean html .PHONY : html html : docs/index.html docs/data.html $(HTML_FILES) $(R_FILES) @@ -23,11 +23,11 @@ docs/%.Rmd : %.R docs/knitopts.R R --slave -e "rmarkdown::render_site('$<')" .PHONY : clean -clean : +clean : cleanjunk $(RM) $(R_FILES) R --slave -e "rmarkdown::clean_site('docs')" .PHONY : cleanjunk -cleanjunk : +cleanjunk : $(RM) -r results/ $(RM) -r data/FungicideTidy.csv \ No newline at end of file diff --git a/Part2-Fig2Recreation.R b/Part2-Fig2Recreation.R index 5fce9eb..7ae9744 100644 --- a/Part2-Fig2Recreation.R +++ b/Part2-Fig2Recreation.R @@ -141,9 +141,14 @@ percents <- blocks %>% percents #' Because figure 2 plotted the average value, we want to summarize our data in #' averages. To do this, we need to convert our data back to tidy format by -#' using the *tidyr* function `gather()`: +#' using the *tidyr* function `gather()`. +#' +#' Additionally, because we observed some values that were missing or divided by +#' zero, we need to add a filter that removes these points. For that, we will +#' use the function `is.finite()`. percents <- percents %>% gather(key = Treatment, value = Area, -DAI, -Block) %>% + filter(is.finite(Area)) %>% # selecting all the finite values of Area mutate(Treatment = factor(Treatment, levels = unique(Treatment))) # reset factor percents #' @@ -154,7 +159,7 @@ percents #' to plot the data in the manner of Morini *et al.* 2017. avgs <- percents %>% group_by(DAI, Treatment) %>% - summarize(meanArea = mean(Area)) %>% + summarize(meanArea = mean(Area, na.rm = TRUE)) %>% ungroup() avgs #' diff --git a/Part2-Fig2Recreation.html b/Part2-Fig2Recreation.html deleted file mode 100644 index 23d0a16..0000000 --- a/Part2-Fig2Recreation.html +++ /dev/null @@ -1,777 +0,0 @@ - - - - -
- - - - - - - - - -In this exercise, we will learn how to read in data as an object in R, find and load packages into our library, and then re-create Figure 2 from the 2017 paper by Morini et al. paper “Control of white mold of dry bean and residual activity of fungicides applied by chemigation.”
-We can use the read.table()
function to read these data in to R. It’s important to remember that while in R, these data are simply a copy kept in memory, not on the disk, so we don’t have to worry too much about accidentally deleting the data :).
So, how do we actually USE the read.table()
function? A good first step to figuring out how you can use a function is to look at it’s help page. The way you can do that is by typing either help(“function_name”) or ?function_name.
# Type ?read.table and answer these three questions:
- #
- # 1. What does it do? (Description)
- # 2. What are the first three arguments and their defaults? (Usage/Arguments)
- # 3. What does it return? (Value)
-In order to read our data into R, we will need to provide three things:
-Now that we have these elements, we can read our data into a variable, which we can call “res” because it is short for “results”. Once we do this, we should check the dimensions to make sure that we have all of the data.
-Now we can read in the data and inspect to make sure it is what we expect.
-res <- read.csv("Results2017_combined-class.csv", head = TRUE, stringsAsFactors = FALSE)
-head(res)
-## DAI Number Your.name Area Treatment Block
-## 1 1 1 Noel 19.808 control 1
-## 2 1 2 Noel 9.371 2.53 mm water 1
-## 3 1 3 Noel 0.000 5.07 mm water 1
-## 4 1 4 Noel 0.531 10.13 mm water 1
-## 5 1 5 Lee 0.000 10.13 mm water 2
-## 6 1 6 Lee 20.914 control 2
-dim(res)
-## [1] 288 6
-This shows the data in columns named DAI, Number, Your.name, Area, and Treatment.
-# Thinking before doing: Your data and the analysis
-#
-# The example data presented here were collected by students in the 2017
-# PLPT802 class and should represent the same data that this year's class collected.
-# This data consists of six columns of data: DAI, Number, Your.name, Area, Treatment, and Block.
-# With these data, we want to answer the following questions:
-#
-# 1. Can we convert lesion areas to a measurement that is relative to the control?
-# 2. What do we want to plot in order to demonstrate the residual disease control over
-# time by treatment?
-#
-# To answer these questions, we will need to manipulate the layout of the data and will also
-# need to write a function to perform a calculation and then plot the results of the
-# calculations over time. Not all data manipulations will be described in detail here and
-# are shown so that you can re-run this analysis using data collected in class. We will
-# do this using the following four steps:
-#
-# 1. Create a function
-# 2. Spread the data in different columns by treatment
-# 3. Calculate percent disease control
-# 4. Summarize the average lesion area in a plot
-#
-#
-We will re-create the figure using three packages dplyr, tidyr, and ggplot2. These packages add flexibility to data and figure manipulations. We will not go into these in detail. Refer to the tab in this website called “Other Exercises” to get started learning more.
-library("dplyr")
-library("tidyr")
-library("ggplot2")
-The factors in the treatments will be out of order when plotting because it’s always alphabetical by default (and 1 comes before 2). Here we are reordering the factors:
-unique(res$Treatment) # The correct order
-## [1] "control" "2.53 mm water" "5.07 mm water" "10.13 mm water"
-res <- mutate(res, Treatment = factor(Treatment, levels = unique(Treatment)))
-levels(res$Treatment)
-## [1] "control" "2.53 mm water" "5.07 mm water" "10.13 mm water"
-Percent disease control is “estimated as the difference in lesion area of the control and treatment, divided by lesion area of the control and expressed as percent.” Because we will have to make this calculation many times, it’s best to write a function for it.
-Our function will take in two numbers, the lesion area of the control and the lesion area of the treatment.
-percent_control <- function(control, treatment){
- res <- (control - treatment)/control # estimate the disease control
- return(res*100) # express as percent
-}
-We can show that this works:
-percent_control(control = 10, treatment = 5)
-## [1] 50
-Our data were recorded in a “tidy” fashion in which we had one observation per row. In order to calculate the percent control, we’ll need to rehshape our data so that we have one column per treatment such that each row will represent a single block per day after application. We’ll use the tidyr function spread()
to do this.
blocks <- res %>%
- select(DAI, Block, Treatment, Area) %>% # We don't need name or number here
- spread(Treatment, Area) # make new columns from treatment, and fill with Area
-blocks
-## DAI Block control 2.53 mm water 5.07 mm water 10.13 mm water
-## 1 1 1 19.808 9.371 0.000 0.531
-## 2 1 2 20.914 0.000 0.173 0.000
-## 3 1 3 15.206 21.173 0.000 18.270
-## 4 1 4 11.598 0.000 5.736 9.524
-## 5 1 5 3.034 0.000 0.458 1.943
-## 6 1 6 8.770 12.053 13.148 0.000
-## 7 1 7 12.951 0.000 15.283 14.839
-## 8 1 8 20.537 0.000 12.080 1.737
-## 9 1 9 25.941 0.000 7.428 1.592
-## 10 1 10 22.998 3.106 0.000 7.679
-## 11 1 11 15.302 0.000 20.567 0.000
-## 12 1 12 23.496 0.000 14.778 0.000
-## 13 3 1 4.853 18.860 1.632 10.572
-## 14 3 2 20.540 0.000 5.032 0.000
-## 15 3 3 20.577 13.730 0.000 10.990
-## 16 3 4 20.374 8.404 0.000 0.000
-## 17 3 5 18.757 2.168 0.000 8.969
-## 18 3 6 0.000 9.768 0.000 0.000
-## 19 3 7 21.004 0.000 18.070 18.346
-## 20 3 8 27.562 3.396 3.715 0.000
-## 21 3 9 4.378 0.922 0.000 0.000
-## 22 3 10 5.200 1.206 0.000 0.000
-## 23 3 11 3.249 0.000 0.565 1.558
-## 24 3 12 4.874 0.000 1.989 1.954
-## 25 5 1 4.883 0.043 0.790 0.000
-## 26 5 2 3.056 1.605 3.636 5.114
-## 27 5 3 5.618 3.883 5.844 0.156
-## 28 5 4 6.982 3.231 1.904 3.178
-## 29 5 5 5.009 1.302 1.713 3.706
-## 30 5 6 7.928 0.000 1.283 3.645
-## 31 5 7 3.008 2.018 0.000 2.141
-## 32 5 8 6.897 0.409 2.970 0.308
-## 33 5 9 7.436 3.427 2.257 4.952
-## 34 5 10 3.220 2.375 6.440 5.177
-## 35 5 11 0.216 1.559 3.864 0.000
-## 36 5 12 4.263 0.000 2.708 7.763
-## 37 7 1 9.142 7.791 6.630 5.999
-## 38 7 2 5.434 1.156 10.471 8.931
-## 39 7 3 8.585 0.000 6.271 5.393
-## 40 7 4 10.235 4.716 5.185 6.353
-## 41 7 5 55.971 13.891 1.525 12.636
-## 42 7 6 31.311 12.637 14.733 24.960
-## 43 7 7 21.758 0.000 23.765 12.978
-## 44 7 8 37.599 0.131 6.613 4.550
-## 45 7 9 7.359 1.795 1.759 6.350
-## 46 7 10 5.552 0.000 1.268 5.412
-## 47 7 11 5.069 8.384 6.041 3.176
-## 48 7 12 7.591 0.000 0.000 5.515
-## 49 9 1 8.919 8.796 7.081 4.643
-## 50 9 2 10.657 8.862 6.634 4.739
-## 51 9 3 9.730 2.427 1.883 7.845
-## 52 9 4 10.671 6.912 7.440 8.794
-## 53 9 5 10.393 2.631 5.389 3.524
-## 54 9 6 8.071 6.992 8.032 2.958
-## 55 9 7 6.356 4.054 6.538 5.624
-## 56 9 8 8.292 3.227 8.240 8.555
-## 57 9 9 6.113 3.772 7.535 6.817
-## 58 9 10 8.865 5.242 5.905 8.144
-## 59 9 11 5.845 2.444 7.000 8.436
-## 60 9 12 7.474 1.745 6.439 5.909
-## 61 11 1 7.050 7.796 6.499 3.263
-## 62 11 2 11.174 6.813 4.792 4.166
-## 63 11 3 5.434 2.679 2.493 7.671
-## 64 11 4 9.026 9.877 7.636 8.345
-## 65 11 5 9.134 2.167 4.587 2.911
-## 66 11 6 8.089 7.029 9.049 2.460
-## 67 11 7 5.497 3.430 7.416 4.440
-## 68 11 8 7.777 2.426 6.300 6.878
-## 69 11 9 8.235 7.302 8.213 9.184
-## 70 11 10 8.933 4.668 6.943 10.742
-## 71 11 11 21.237 7.896 42.692 20.002
-## 72 11 12 25.596 8.952 26.063 18.278
-Now that we have reshaped our data, we can manipulate each treatment column to give us the percent control.
-# Note: the backtics "`" allow R to recognize a variable with spaces.
-percents <- blocks %>%
- mutate(`2.53 mm water` = percent_control(control, `2.53 mm water`)) %>%
- mutate(`5.07 mm water` = percent_control(control, `5.07 mm water`)) %>%
- mutate(`10.13 mm water` = percent_control(control, `10.13 mm water`)) %>%
- mutate(control = percent_control(control, 0))
-percents
-## DAI Block control 2.53 mm water 5.07 mm water 10.13 mm water
-## 1 1 1 100 52.690832 100.0000000 97.319265
-## 2 1 2 100 100.000000 99.1728029 100.000000
-## 3 1 3 100 -39.241089 100.0000000 -20.149941
-## 4 1 4 100 100.000000 50.5431971 17.882394
-## 5 1 5 100 100.000000 84.9044166 35.959130
-## 6 1 6 100 -37.434436 -49.9201824 100.000000
-## 7 1 7 100 100.000000 -18.0063316 -14.578025
-## 8 1 8 100 100.000000 41.1793349 91.542095
-## 9 1 9 100 100.000000 71.3657916 93.862997
-## 10 1 10 100 86.494478 100.0000000 66.610140
-## 11 1 11 100 100.000000 -34.4072670 100.000000
-## 12 1 12 100 100.000000 37.1041879 100.000000
-## 13 3 1 100 -288.625592 66.3713167 -117.844632
-## 14 3 2 100 100.000000 75.5014606 100.000000
-## 15 3 3 100 33.275016 100.0000000 46.590854
-## 16 3 4 100 58.751350 100.0000000 100.000000
-## 17 3 5 100 88.441648 100.0000000 52.183185
-## 18 3 6 NaN -Inf NaN NaN
-## 19 3 7 100 100.000000 13.9687679 12.654732
-## 20 3 8 100 87.678688 86.5212974 100.000000
-## 21 3 9 100 78.940155 100.0000000 100.000000
-## 22 3 10 100 76.807692 100.0000000 100.000000
-## 23 3 11 100 100.000000 82.6100339 52.046784
-## 24 3 12 100 100.000000 59.1916291 59.909725
-## 25 5 1 100 99.119394 83.8214213 100.000000
-## 26 5 2 100 47.480366 -18.9790576 -67.342932
-## 27 5 3 100 30.882876 -4.0227839 97.223211
-## 28 5 4 100 53.723861 72.7298768 54.482956
-## 29 5 5 100 74.006788 65.8015572 26.013176
-## 30 5 6 100 100.000000 83.8168517 54.023713
-## 31 5 7 100 32.912234 100.0000000 28.823138
-## 32 5 8 100 94.069885 56.9377990 95.534290
-## 33 5 9 100 53.913394 69.6476600 33.405056
-## 34 5 10 100 26.242236 -100.0000000 -60.776398
-## 35 5 11 100 -621.759259 -1688.8888889 100.000000
-## 36 5 12 100 100.000000 36.4766596 -82.101806
-## 37 7 1 100 14.777948 27.4775760 34.379786
-## 38 7 2 100 78.726537 -92.6941480 -64.354067
-## 39 7 3 100 100.000000 26.9539895 37.181130
-## 40 7 4 100 53.922814 49.3404983 37.928676
-## 41 7 5 100 75.181791 97.2753747 77.424023
-## 42 7 6 100 59.640382 52.9462489 20.283606
-## 43 7 7 100 100.000000 -9.2241934 40.352974
-## 44 7 8 100 99.651586 82.4117663 87.898614
-## 45 7 9 100 75.608099 76.0972958 13.711102
-## 46 7 10 100 100.000000 77.1613833 2.521614
-## 47 7 11 100 -65.397514 -19.1753798 37.344644
-## 48 7 12 100 100.000000 100.0000000 27.348175
-## 49 9 1 100 1.379078 20.6076914 47.942594
-## 50 9 2 100 16.843389 37.7498358 55.531575
-## 51 9 3 100 75.056526 80.6474820 19.373073
-## 52 9 4 100 35.226314 30.2783244 17.589729
-## 53 9 5 100 74.684884 48.1477918 66.092562
-## 54 9 6 100 13.368851 0.4832115 63.350266
-## 55 9 7 100 36.217747 -2.8634361 11.516677
-## 56 9 8 100 61.082972 0.6271105 -3.171732
-## 57 9 9 100 38.295436 -23.2619009 -11.516440
-## 58 9 10 100 40.868584 33.3897349 8.133108
-## 59 9 11 100 58.186484 -19.7604790 -44.328486
-## 60 9 12 100 76.652395 13.8480064 20.939256
-## 61 11 1 100 -10.581560 7.8156028 53.716312
-## 62 11 2 100 39.028101 57.1147306 62.717022
-## 63 11 3 100 50.699301 54.1221936 -41.166728
-## 64 11 4 100 -9.428318 15.3999557 7.544870
-## 65 11 5 100 76.275454 49.7810379 68.130063
-## 66 11 6 100 13.104216 -11.8679688 69.588330
-## 67 11 7 100 37.602329 -34.9099509 19.228670
-## 68 11 8 100 68.805452 18.9918992 11.559727
-## 69 11 9 100 11.329690 0.2671524 -11.523983
-## 70 11 10 100 47.744319 22.2769506 -20.250756
-## 71 11 11 100 62.819607 -101.0265103 5.815322
-## 72 11 12 100 65.025785 -1.8245038 28.590405
-Because figure 2 plotted the average value, we want to summarize our data in averages. To do this, we need to convert our data back to tidy format by using the tidyr function gather()
:
percents <- percents %>%
- gather(key = Treatment, value = Area, -DAI, -Block) %>%
- mutate(Treatment = factor(Treatment, levels = unique(Treatment))) # reset factor
-percents
-## DAI Block Treatment Area
-## 1 1 1 control 100.0000000
-## 2 1 2 control 100.0000000
-## 3 1 3 control 100.0000000
-## 4 1 4 control 100.0000000
-## 5 1 5 control 100.0000000
-## 6 1 6 control 100.0000000
-## 7 1 7 control 100.0000000
-## 8 1 8 control 100.0000000
-## 9 1 9 control 100.0000000
-## 10 1 10 control 100.0000000
-## 11 1 11 control 100.0000000
-## 12 1 12 control 100.0000000
-## 13 3 1 control 100.0000000
-## 14 3 2 control 100.0000000
-## 15 3 3 control 100.0000000
-## 16 3 4 control 100.0000000
-## 17 3 5 control 100.0000000
-## 18 3 6 control NaN
-## 19 3 7 control 100.0000000
-## 20 3 8 control 100.0000000
-## 21 3 9 control 100.0000000
-## 22 3 10 control 100.0000000
-## 23 3 11 control 100.0000000
-## 24 3 12 control 100.0000000
-## 25 5 1 control 100.0000000
-## 26 5 2 control 100.0000000
-## 27 5 3 control 100.0000000
-## 28 5 4 control 100.0000000
-## 29 5 5 control 100.0000000
-## 30 5 6 control 100.0000000
-## 31 5 7 control 100.0000000
-## 32 5 8 control 100.0000000
-## 33 5 9 control 100.0000000
-## 34 5 10 control 100.0000000
-## 35 5 11 control 100.0000000
-## 36 5 12 control 100.0000000
-## 37 7 1 control 100.0000000
-## 38 7 2 control 100.0000000
-## 39 7 3 control 100.0000000
-## 40 7 4 control 100.0000000
-## 41 7 5 control 100.0000000
-## 42 7 6 control 100.0000000
-## 43 7 7 control 100.0000000
-## 44 7 8 control 100.0000000
-## 45 7 9 control 100.0000000
-## 46 7 10 control 100.0000000
-## 47 7 11 control 100.0000000
-## 48 7 12 control 100.0000000
-## 49 9 1 control 100.0000000
-## 50 9 2 control 100.0000000
-## 51 9 3 control 100.0000000
-## 52 9 4 control 100.0000000
-## 53 9 5 control 100.0000000
-## 54 9 6 control 100.0000000
-## 55 9 7 control 100.0000000
-## 56 9 8 control 100.0000000
-## 57 9 9 control 100.0000000
-## 58 9 10 control 100.0000000
-## 59 9 11 control 100.0000000
-## 60 9 12 control 100.0000000
-## 61 11 1 control 100.0000000
-## 62 11 2 control 100.0000000
-## 63 11 3 control 100.0000000
-## 64 11 4 control 100.0000000
-## 65 11 5 control 100.0000000
-## 66 11 6 control 100.0000000
-## 67 11 7 control 100.0000000
-## 68 11 8 control 100.0000000
-## 69 11 9 control 100.0000000
-## 70 11 10 control 100.0000000
-## 71 11 11 control 100.0000000
-## 72 11 12 control 100.0000000
-## 73 1 1 2.53 mm water 52.6908320
-## 74 1 2 2.53 mm water 100.0000000
-## 75 1 3 2.53 mm water -39.2410890
-## 76 1 4 2.53 mm water 100.0000000
-## 77 1 5 2.53 mm water 100.0000000
-## 78 1 6 2.53 mm water -37.4344356
-## 79 1 7 2.53 mm water 100.0000000
-## 80 1 8 2.53 mm water 100.0000000
-## 81 1 9 2.53 mm water 100.0000000
-## 82 1 10 2.53 mm water 86.4944778
-## 83 1 11 2.53 mm water 100.0000000
-## 84 1 12 2.53 mm water 100.0000000
-## 85 3 1 2.53 mm water -288.6255924
-## 86 3 2 2.53 mm water 100.0000000
-## 87 3 3 2.53 mm water 33.2750158
-## 88 3 4 2.53 mm water 58.7513498
-## 89 3 5 2.53 mm water 88.4416485
-## 90 3 6 2.53 mm water -Inf
-## 91 3 7 2.53 mm water 100.0000000
-## 92 3 8 2.53 mm water 87.6786880
-## 93 3 9 2.53 mm water 78.9401553
-## 94 3 10 2.53 mm water 76.8076923
-## 95 3 11 2.53 mm water 100.0000000
-## 96 3 12 2.53 mm water 100.0000000
-## 97 5 1 2.53 mm water 99.1193938
-## 98 5 2 2.53 mm water 47.4803665
-## 99 5 3 2.53 mm water 30.8828765
-## 100 5 4 2.53 mm water 53.7238614
-## 101 5 5 2.53 mm water 74.0067878
-## 102 5 6 2.53 mm water 100.0000000
-## 103 5 7 2.53 mm water 32.9122340
-## 104 5 8 2.53 mm water 94.0698855
-## 105 5 9 2.53 mm water 53.9133943
-## 106 5 10 2.53 mm water 26.2422360
-## 107 5 11 2.53 mm water -621.7592593
-## 108 5 12 2.53 mm water 100.0000000
-## 109 7 1 2.53 mm water 14.7779479
-## 110 7 2 2.53 mm water 78.7265366
-## 111 7 3 2.53 mm water 100.0000000
-## 112 7 4 2.53 mm water 53.9228139
-## 113 7 5 2.53 mm water 75.1817906
-## 114 7 6 2.53 mm water 59.6403820
-## 115 7 7 2.53 mm water 100.0000000
-## 116 7 8 2.53 mm water 99.6515865
-## 117 7 9 2.53 mm water 75.6080989
-## 118 7 10 2.53 mm water 100.0000000
-## 119 7 11 2.53 mm water -65.3975143
-## 120 7 12 2.53 mm water 100.0000000
-## 121 9 1 2.53 mm water 1.3790784
-## 122 9 2 2.53 mm water 16.8433893
-## 123 9 3 2.53 mm water 75.0565262
-## 124 9 4 2.53 mm water 35.2263143
-## 125 9 5 2.53 mm water 74.6848841
-## 126 9 6 2.53 mm water 13.3688514
-## 127 9 7 2.53 mm water 36.2177470
-## 128 9 8 2.53 mm water 61.0829715
-## 129 9 9 2.53 mm water 38.2954360
-## 130 9 10 2.53 mm water 40.8685843
-## 131 9 11 2.53 mm water 58.1864842
-## 132 9 12 2.53 mm water 76.6523950
-## 133 11 1 2.53 mm water -10.5815603
-## 134 11 2 2.53 mm water 39.0281009
-## 135 11 3 2.53 mm water 50.6993007
-## 136 11 4 2.53 mm water -9.4283182
-## 137 11 5 2.53 mm water 76.2754543
-## 138 11 6 2.53 mm water 13.1042156
-## 139 11 7 2.53 mm water 37.6023285
-## 140 11 8 2.53 mm water 68.8054520
-## 141 11 9 2.53 mm water 11.3296903
-## 142 11 10 2.53 mm water 47.7443188
-## 143 11 11 2.53 mm water 62.8196073
-## 144 11 12 2.53 mm water 65.0257853
-## 145 1 1 5.07 mm water 100.0000000
-## 146 1 2 5.07 mm water 99.1728029
-## 147 1 3 5.07 mm water 100.0000000
-## 148 1 4 5.07 mm water 50.5431971
-## 149 1 5 5.07 mm water 84.9044166
-## 150 1 6 5.07 mm water -49.9201824
-## 151 1 7 5.07 mm water -18.0063316
-## 152 1 8 5.07 mm water 41.1793349
-## 153 1 9 5.07 mm water 71.3657916
-## 154 1 10 5.07 mm water 100.0000000
-## 155 1 11 5.07 mm water -34.4072670
-## 156 1 12 5.07 mm water 37.1041879
-## 157 3 1 5.07 mm water 66.3713167
-## 158 3 2 5.07 mm water 75.5014606
-## 159 3 3 5.07 mm water 100.0000000
-## 160 3 4 5.07 mm water 100.0000000
-## 161 3 5 5.07 mm water 100.0000000
-## 162 3 6 5.07 mm water NaN
-## 163 3 7 5.07 mm water 13.9687679
-## 164 3 8 5.07 mm water 86.5212974
-## 165 3 9 5.07 mm water 100.0000000
-## 166 3 10 5.07 mm water 100.0000000
-## 167 3 11 5.07 mm water 82.6100339
-## 168 3 12 5.07 mm water 59.1916291
-## 169 5 1 5.07 mm water 83.8214213
-## 170 5 2 5.07 mm water -18.9790576
-## 171 5 3 5.07 mm water -4.0227839
-## 172 5 4 5.07 mm water 72.7298768
-## 173 5 5 5.07 mm water 65.8015572
-## 174 5 6 5.07 mm water 83.8168517
-## 175 5 7 5.07 mm water 100.0000000
-## 176 5 8 5.07 mm water 56.9377990
-## 177 5 9 5.07 mm water 69.6476600
-## 178 5 10 5.07 mm water -100.0000000
-## 179 5 11 5.07 mm water -1688.8888889
-## 180 5 12 5.07 mm water 36.4766596
-## 181 7 1 5.07 mm water 27.4775760
-## 182 7 2 5.07 mm water -92.6941480
-## 183 7 3 5.07 mm water 26.9539895
-## 184 7 4 5.07 mm water 49.3404983
-## 185 7 5 5.07 mm water 97.2753747
-## 186 7 6 5.07 mm water 52.9462489
-## 187 7 7 5.07 mm water -9.2241934
-## 188 7 8 5.07 mm water 82.4117663
-## 189 7 9 5.07 mm water 76.0972958
-## 190 7 10 5.07 mm water 77.1613833
-## 191 7 11 5.07 mm water -19.1753798
-## 192 7 12 5.07 mm water 100.0000000
-## 193 9 1 5.07 mm water 20.6076914
-## 194 9 2 5.07 mm water 37.7498358
-## 195 9 3 5.07 mm water 80.6474820
-## 196 9 4 5.07 mm water 30.2783244
-## 197 9 5 5.07 mm water 48.1477918
-## 198 9 6 5.07 mm water 0.4832115
-## 199 9 7 5.07 mm water -2.8634361
-## 200 9 8 5.07 mm water 0.6271105
-## 201 9 9 5.07 mm water -23.2619009
-## 202 9 10 5.07 mm water 33.3897349
-## 203 9 11 5.07 mm water -19.7604790
-## 204 9 12 5.07 mm water 13.8480064
-## 205 11 1 5.07 mm water 7.8156028
-## 206 11 2 5.07 mm water 57.1147306
-## 207 11 3 5.07 mm water 54.1221936
-## 208 11 4 5.07 mm water 15.3999557
-## 209 11 5 5.07 mm water 49.7810379
-## 210 11 6 5.07 mm water -11.8679688
-## 211 11 7 5.07 mm water -34.9099509
-## 212 11 8 5.07 mm water 18.9918992
-## 213 11 9 5.07 mm water 0.2671524
-## 214 11 10 5.07 mm water 22.2769506
-## 215 11 11 5.07 mm water -101.0265103
-## 216 11 12 5.07 mm water -1.8245038
-## 217 1 1 10.13 mm water 97.3192649
-## 218 1 2 10.13 mm water 100.0000000
-## 219 1 3 10.13 mm water -20.1499408
-## 220 1 4 10.13 mm water 17.8823935
-## 221 1 5 10.13 mm water 35.9591299
-## 222 1 6 10.13 mm water 100.0000000
-## 223 1 7 10.13 mm water -14.5780249
-## 224 1 8 10.13 mm water 91.5420948
-## 225 1 9 10.13 mm water 93.8629968
-## 226 1 10 10.13 mm water 66.6101400
-## 227 1 11 10.13 mm water 100.0000000
-## 228 1 12 10.13 mm water 100.0000000
-## 229 3 1 10.13 mm water -117.8446322
-## 230 3 2 10.13 mm water 100.0000000
-## 231 3 3 10.13 mm water 46.5908539
-## 232 3 4 10.13 mm water 100.0000000
-## 233 3 5 10.13 mm water 52.1831849
-## 234 3 6 10.13 mm water NaN
-## 235 3 7 10.13 mm water 12.6547324
-## 236 3 8 10.13 mm water 100.0000000
-## 237 3 9 10.13 mm water 100.0000000
-## 238 3 10 10.13 mm water 100.0000000
-## 239 3 11 10.13 mm water 52.0467836
-## 240 3 12 10.13 mm water 59.9097251
-## 241 5 1 10.13 mm water 100.0000000
-## 242 5 2 10.13 mm water -67.3429319
-## 243 5 3 10.13 mm water 97.2232111
-## 244 5 4 10.13 mm water 54.4829562
-## 245 5 5 10.13 mm water 26.0131763
-## 246 5 6 10.13 mm water 54.0237134
-## 247 5 7 10.13 mm water 28.8231383
-## 248 5 8 10.13 mm water 95.5342903
-## 249 5 9 10.13 mm water 33.4050565
-## 250 5 10 10.13 mm water -60.7763975
-## 251 5 11 10.13 mm water 100.0000000
-## 252 5 12 10.13 mm water -82.1018062
-## 253 7 1 10.13 mm water 34.3797856
-## 254 7 2 10.13 mm water -64.3540670
-## 255 7 3 10.13 mm water 37.1811299
-## 256 7 4 10.13 mm water 37.9286761
-## 257 7 5 10.13 mm water 77.4240232
-## 258 7 6 10.13 mm water 20.2836064
-## 259 7 7 10.13 mm water 40.3529736
-## 260 7 8 10.13 mm water 87.8986143
-## 261 7 9 10.13 mm water 13.7111021
-## 262 7 10 10.13 mm water 2.5216138
-## 263 7 11 10.13 mm water 37.3446439
-## 264 7 12 10.13 mm water 27.3481755
-## 265 9 1 10.13 mm water 47.9425945
-## 266 9 2 10.13 mm water 55.5315755
-## 267 9 3 10.13 mm water 19.3730730
-## 268 9 4 10.13 mm water 17.5897292
-## 269 9 5 10.13 mm water 66.0925623
-## 270 9 6 10.13 mm water 63.3502664
-## 271 9 7 10.13 mm water 11.5166772
-## 272 9 8 10.13 mm water -3.1717318
-## 273 9 9 10.13 mm water -11.5164404
-## 274 9 10 10.13 mm water 8.1331077
-## 275 9 11 10.13 mm water -44.3284859
-## 276 9 12 10.13 mm water 20.9392561
-## 277 11 1 10.13 mm water 53.7163121
-## 278 11 2 10.13 mm water 62.7170217
-## 279 11 3 10.13 mm water -41.1667280
-## 280 11 4 10.13 mm water 7.5448704
-## 281 11 5 10.13 mm water 68.1300635
-## 282 11 6 10.13 mm water 69.5883298
-## 283 11 7 10.13 mm water 19.2286702
-## 284 11 8 10.13 mm water 11.5597274
-## 285 11 9 10.13 mm water -11.5239830
-## 286 11 10 10.13 mm water -20.2507556
-## 287 11 11 10.13 mm water 5.8153223
-## 288 11 12 10.13 mm water 28.5904048
-We can summarize the average area per DAI and Treatment, which will allow us to plot the data in the manner of Morini et al. 2017.
-avgs <- percents %>%
- group_by(DAI, Treatment) %>%
- summarize(meanArea = mean(Area)) %>%
- ungroup()
-avgs
-## # A tibble: 24 x 3
-## DAI Treatment meanArea
-## <int> <fct> <dbl>
-## 1 1 control 100
-## 2 1 2.53 mm water 71.9
-## 3 1 5.07 mm water 48.5
-## 4 1 10.13 mm water 64.0
-## 5 3 control NaN
-## 6 3 2.53 mm water -Inf
-## 7 3 5.07 mm water NaN
-## 8 3 10.13 mm water NaN
-## 9 5 control 100
-## 10 5 2.53 mm water 7.55
-## # ... with 14 more rows
-Now that we have our averages, we can plot it using ggplot2
-ggplot(avgs, aes(x = DAI, y = meanArea, group = Treatment)) +
- geom_point(aes(pch = Treatment), size = 3) + # plot the points
- stat_smooth(aes(lty = Treatment), method = "lm", se = FALSE, color = "black") + # plot the regression
- theme_classic() + # change the appearance
- ylim(0, 100) + # set the limits on the y axis
- theme(text = element_text(size = 14)) + # increase the text size
- labs(list( # Set the labels
- x = "Days after fluazinam application",
- y = "Percent disease control",
- pch = "Irrigation levels",
- lty = "Irrigation levels"))
-## Warning: Removed 5 rows containing non-finite values (stat_smooth).
-## Warning: Removed 4 rows containing missing values (geom_point).
-
-When we plot the averages, we inadvertently hide the data. Of course, if we tried to plot all the data in one graph, it would look a bit messy:
-ggplot(percents, aes(x = DAI, y = Area, group = Treatment)) +
- geom_point(aes(pch = Treatment), size = 3) + # plot the points
- stat_smooth(aes(lty = Treatment), method = "lm", se = FALSE, color = "black") + # plot the regression
- theme_classic() + # change the appearance
- ylim(0, 100) + # set the limits on the y axis
- theme(text = element_text(size = 14)) + # increase the text size
- labs(list( # Set the labels
- x = "Days after fluazinam application",
- y = "Percent disease control",
- pch = "Irrigation levels",
- lty = "Irrigation levels"))
-## Warning: Removed 41 rows containing non-finite values (stat_smooth).
-## Warning: Removed 40 rows containing missing values (geom_point).
-## Warning: Removed 80 rows containing missing values (geom_smooth).
-
-With ggplot2, we can spread the data out into “facets”:
-ggplot(percents, aes(x = DAI, y = Area, group = Treatment)) +
- geom_point(aes(pch = Treatment), size = 2) + # plot the points
- stat_smooth(aes(lty = Treatment), method = "lm", se = FALSE, color = "black") + # plot the regression
- theme_classic() + # change the appearance
- ylim(0, 100) + # set the limits on the y axis
- theme(text = element_text(size = 14)) + # increase the text size
- facet_wrap(~Treatment, nrow = 1) +
- theme(aspect.ratio = 1) +
- labs(list( # Set the labels
- x = "Days after fluazinam application",
- y = "Percent disease control",
- pch = "Irrigation levels",
- lty = "Irrigation levels"))
-## Warning: Removed 41 rows containing non-finite values (stat_smooth).
-## Warning: Removed 40 rows containing missing values (geom_point).
-## Warning: Removed 80 rows containing missing values (geom_smooth).
-
-This introduction to R for plant pathology was originally written as a workshop by Drs. Sydney E. Everhart and Zhian N. Kamvar, and modified to the current form for the 2018 course PLPT 802: Ecology & Management of Plant Pathogens.
-The source code can be found at: https://github.com/everhartlab/IntroR-for-PLPT802.
-As a result of taking this workshop you should be able to:
-Because figure 2 plotted the average value, we want to summarize our data in averages. To do this, we need to convert our data back to tidy format by using the tidyr function gather()
:
Because figure 2 plotted the average value, we want to summarize our data in averages. To do this, we need to convert our data back to tidy format by using the tidyr function gather()
.
Additionally, because we observed some values that were missing or divided by zero, we need to add a filter that removes these points. For that, we will use the function is.finite()
.
> percents <- percents %>%
+ gather(key = Treatment, value = Area, -DAI, -Block) %>%
++ filter(is.finite(Area)) %>% # selecting all the finite values of Area
+ mutate(Treatment = factor(Treatment, levels = unique(Treatment))) # reset factor
> percents
DAI Block Treatment Area
@@ -613,298 +615,294 @@ Step 3: Calculate percent disease control
15 3 3 control 100.0000000
16 3 4 control 100.0000000
17 3 5 control 100.0000000
-18 3 6 control NaN
-19 3 7 control 100.0000000
-20 3 8 control 100.0000000
-21 3 9 control 100.0000000
-22 3 10 control 100.0000000
-23 3 11 control 100.0000000
-24 3 12 control 100.0000000
-25 5 1 control 100.0000000
-26 5 2 control 100.0000000
-27 5 3 control 100.0000000
-28 5 4 control 100.0000000
-29 5 5 control 100.0000000
-30 5 6 control 100.0000000
-31 5 7 control 100.0000000
-32 5 8 control 100.0000000
-33 5 9 control 100.0000000
-34 5 10 control 100.0000000
-35 5 11 control 100.0000000
-36 5 12 control 100.0000000
-37 7 1 control 100.0000000
-38 7 2 control 100.0000000
-39 7 3 control 100.0000000
-40 7 4 control 100.0000000
-41 7 5 control 100.0000000
-42 7 6 control 100.0000000
-43 7 7 control 100.0000000
-44 7 8 control 100.0000000
-45 7 9 control 100.0000000
-46 7 10 control 100.0000000
-47 7 11 control 100.0000000
-48 7 12 control 100.0000000
-49 9 1 control 100.0000000
-50 9 2 control 100.0000000
-51 9 3 control 100.0000000
-52 9 4 control 100.0000000
-53 9 5 control 100.0000000
-54 9 6 control 100.0000000
-55 9 7 control 100.0000000
-56 9 8 control 100.0000000
-57 9 9 control 100.0000000
-58 9 10 control 100.0000000
-59 9 11 control 100.0000000
-60 9 12 control 100.0000000
-61 11 1 control 100.0000000
-62 11 2 control 100.0000000
-63 11 3 control 100.0000000
-64 11 4 control 100.0000000
-65 11 5 control 100.0000000
-66 11 6 control 100.0000000
-67 11 7 control 100.0000000
-68 11 8 control 100.0000000
-69 11 9 control 100.0000000
-70 11 10 control 100.0000000
-71 11 11 control 100.0000000
-72 11 12 control 100.0000000
-73 1 1 2.53 mm water 52.6908320
-74 1 2 2.53 mm water 100.0000000
-75 1 3 2.53 mm water -39.2410890
-76 1 4 2.53 mm water 100.0000000
-77 1 5 2.53 mm water 100.0000000
-78 1 6 2.53 mm water -37.4344356
-79 1 7 2.53 mm water 100.0000000
-80 1 8 2.53 mm water 100.0000000
-81 1 9 2.53 mm water 100.0000000
-82 1 10 2.53 mm water 86.4944778
-83 1 11 2.53 mm water 100.0000000
-84 1 12 2.53 mm water 100.0000000
-85 3 1 2.53 mm water -288.6255924
-86 3 2 2.53 mm water 100.0000000
-87 3 3 2.53 mm water 33.2750158
-88 3 4 2.53 mm water 58.7513498
-89 3 5 2.53 mm water 88.4416485
-90 3 6 2.53 mm water -Inf
-91 3 7 2.53 mm water 100.0000000
-92 3 8 2.53 mm water 87.6786880
-93 3 9 2.53 mm water 78.9401553
-94 3 10 2.53 mm water 76.8076923
-95 3 11 2.53 mm water 100.0000000
-96 3 12 2.53 mm water 100.0000000
-97 5 1 2.53 mm water 99.1193938
-98 5 2 2.53 mm water 47.4803665
-99 5 3 2.53 mm water 30.8828765
-100 5 4 2.53 mm water 53.7238614
-101 5 5 2.53 mm water 74.0067878
-102 5 6 2.53 mm water 100.0000000
-103 5 7 2.53 mm water 32.9122340
-104 5 8 2.53 mm water 94.0698855
-105 5 9 2.53 mm water 53.9133943
-106 5 10 2.53 mm water 26.2422360
-107 5 11 2.53 mm water -621.7592593
-108 5 12 2.53 mm water 100.0000000
-109 7 1 2.53 mm water 14.7779479
-110 7 2 2.53 mm water 78.7265366
-111 7 3 2.53 mm water 100.0000000
-112 7 4 2.53 mm water 53.9228139
-113 7 5 2.53 mm water 75.1817906
-114 7 6 2.53 mm water 59.6403820
-115 7 7 2.53 mm water 100.0000000
-116 7 8 2.53 mm water 99.6515865
-117 7 9 2.53 mm water 75.6080989
-118 7 10 2.53 mm water 100.0000000
-119 7 11 2.53 mm water -65.3975143
-120 7 12 2.53 mm water 100.0000000
-121 9 1 2.53 mm water 1.3790784
-122 9 2 2.53 mm water 16.8433893
-123 9 3 2.53 mm water 75.0565262
-124 9 4 2.53 mm water 35.2263143
-125 9 5 2.53 mm water 74.6848841
-126 9 6 2.53 mm water 13.3688514
-127 9 7 2.53 mm water 36.2177470
-128 9 8 2.53 mm water 61.0829715
-129 9 9 2.53 mm water 38.2954360
-130 9 10 2.53 mm water 40.8685843
-131 9 11 2.53 mm water 58.1864842
-132 9 12 2.53 mm water 76.6523950
-133 11 1 2.53 mm water -10.5815603
-134 11 2 2.53 mm water 39.0281009
-135 11 3 2.53 mm water 50.6993007
-136 11 4 2.53 mm water -9.4283182
-137 11 5 2.53 mm water 76.2754543
-138 11 6 2.53 mm water 13.1042156
-139 11 7 2.53 mm water 37.6023285
-140 11 8 2.53 mm water 68.8054520
-141 11 9 2.53 mm water 11.3296903
-142 11 10 2.53 mm water 47.7443188
-143 11 11 2.53 mm water 62.8196073
-144 11 12 2.53 mm water 65.0257853
-145 1 1 5.07 mm water 100.0000000
-146 1 2 5.07 mm water 99.1728029
-147 1 3 5.07 mm water 100.0000000
-148 1 4 5.07 mm water 50.5431971
-149 1 5 5.07 mm water 84.9044166
-150 1 6 5.07 mm water -49.9201824
-151 1 7 5.07 mm water -18.0063316
-152 1 8 5.07 mm water 41.1793349
-153 1 9 5.07 mm water 71.3657916
-154 1 10 5.07 mm water 100.0000000
-155 1 11 5.07 mm water -34.4072670
-156 1 12 5.07 mm water 37.1041879
-157 3 1 5.07 mm water 66.3713167
-158 3 2 5.07 mm water 75.5014606
-159 3 3 5.07 mm water 100.0000000
-160 3 4 5.07 mm water 100.0000000
-161 3 5 5.07 mm water 100.0000000
-162 3 6 5.07 mm water NaN
-163 3 7 5.07 mm water 13.9687679
-164 3 8 5.07 mm water 86.5212974
-165 3 9 5.07 mm water 100.0000000
-166 3 10 5.07 mm water 100.0000000
-167 3 11 5.07 mm water 82.6100339
-168 3 12 5.07 mm water 59.1916291
-169 5 1 5.07 mm water 83.8214213
-170 5 2 5.07 mm water -18.9790576
-171 5 3 5.07 mm water -4.0227839
-172 5 4 5.07 mm water 72.7298768
-173 5 5 5.07 mm water 65.8015572
-174 5 6 5.07 mm water 83.8168517
-175 5 7 5.07 mm water 100.0000000
-176 5 8 5.07 mm water 56.9377990
-177 5 9 5.07 mm water 69.6476600
-178 5 10 5.07 mm water -100.0000000
-179 5 11 5.07 mm water -1688.8888889
-180 5 12 5.07 mm water 36.4766596
-181 7 1 5.07 mm water 27.4775760
-182 7 2 5.07 mm water -92.6941480
-183 7 3 5.07 mm water 26.9539895
-184 7 4 5.07 mm water 49.3404983
-185 7 5 5.07 mm water 97.2753747
-186 7 6 5.07 mm water 52.9462489
-187 7 7 5.07 mm water -9.2241934
-188 7 8 5.07 mm water 82.4117663
-189 7 9 5.07 mm water 76.0972958
-190 7 10 5.07 mm water 77.1613833
-191 7 11 5.07 mm water -19.1753798
-192 7 12 5.07 mm water 100.0000000
-193 9 1 5.07 mm water 20.6076914
-194 9 2 5.07 mm water 37.7498358
-195 9 3 5.07 mm water 80.6474820
-196 9 4 5.07 mm water 30.2783244
-197 9 5 5.07 mm water 48.1477918
-198 9 6 5.07 mm water 0.4832115
-199 9 7 5.07 mm water -2.8634361
-200 9 8 5.07 mm water 0.6271105
-201 9 9 5.07 mm water -23.2619009
-202 9 10 5.07 mm water 33.3897349
-203 9 11 5.07 mm water -19.7604790
-204 9 12 5.07 mm water 13.8480064
-205 11 1 5.07 mm water 7.8156028
-206 11 2 5.07 mm water 57.1147306
-207 11 3 5.07 mm water 54.1221936
-208 11 4 5.07 mm water 15.3999557
-209 11 5 5.07 mm water 49.7810379
-210 11 6 5.07 mm water -11.8679688
-211 11 7 5.07 mm water -34.9099509
-212 11 8 5.07 mm water 18.9918992
-213 11 9 5.07 mm water 0.2671524
-214 11 10 5.07 mm water 22.2769506
-215 11 11 5.07 mm water -101.0265103
-216 11 12 5.07 mm water -1.8245038
-217 1 1 10.13 mm water 97.3192649
-218 1 2 10.13 mm water 100.0000000
-219 1 3 10.13 mm water -20.1499408
-220 1 4 10.13 mm water 17.8823935
-221 1 5 10.13 mm water 35.9591299
-222 1 6 10.13 mm water 100.0000000
-223 1 7 10.13 mm water -14.5780249
-224 1 8 10.13 mm water 91.5420948
-225 1 9 10.13 mm water 93.8629968
-226 1 10 10.13 mm water 66.6101400
-227 1 11 10.13 mm water 100.0000000
-228 1 12 10.13 mm water 100.0000000
-229 3 1 10.13 mm water -117.8446322
-230 3 2 10.13 mm water 100.0000000
-231 3 3 10.13 mm water 46.5908539
-232 3 4 10.13 mm water 100.0000000
-233 3 5 10.13 mm water 52.1831849
-234 3 6 10.13 mm water NaN
-235 3 7 10.13 mm water 12.6547324
-236 3 8 10.13 mm water 100.0000000
-237 3 9 10.13 mm water 100.0000000
-238 3 10 10.13 mm water 100.0000000
-239 3 11 10.13 mm water 52.0467836
-240 3 12 10.13 mm water 59.9097251
-241 5 1 10.13 mm water 100.0000000
-242 5 2 10.13 mm water -67.3429319
-243 5 3 10.13 mm water 97.2232111
-244 5 4 10.13 mm water 54.4829562
-245 5 5 10.13 mm water 26.0131763
-246 5 6 10.13 mm water 54.0237134
-247 5 7 10.13 mm water 28.8231383
-248 5 8 10.13 mm water 95.5342903
-249 5 9 10.13 mm water 33.4050565
-250 5 10 10.13 mm water -60.7763975
-251 5 11 10.13 mm water 100.0000000
-252 5 12 10.13 mm water -82.1018062
-253 7 1 10.13 mm water 34.3797856
-254 7 2 10.13 mm water -64.3540670
-255 7 3 10.13 mm water 37.1811299
-256 7 4 10.13 mm water 37.9286761
-257 7 5 10.13 mm water 77.4240232
-258 7 6 10.13 mm water 20.2836064
-259 7 7 10.13 mm water 40.3529736
-260 7 8 10.13 mm water 87.8986143
-261 7 9 10.13 mm water 13.7111021
-262 7 10 10.13 mm water 2.5216138
-263 7 11 10.13 mm water 37.3446439
-264 7 12 10.13 mm water 27.3481755
-265 9 1 10.13 mm water 47.9425945
-266 9 2 10.13 mm water 55.5315755
-267 9 3 10.13 mm water 19.3730730
-268 9 4 10.13 mm water 17.5897292
-269 9 5 10.13 mm water 66.0925623
-270 9 6 10.13 mm water 63.3502664
-271 9 7 10.13 mm water 11.5166772
-272 9 8 10.13 mm water -3.1717318
-273 9 9 10.13 mm water -11.5164404
-274 9 10 10.13 mm water 8.1331077
-275 9 11 10.13 mm water -44.3284859
-276 9 12 10.13 mm water 20.9392561
-277 11 1 10.13 mm water 53.7163121
-278 11 2 10.13 mm water 62.7170217
-279 11 3 10.13 mm water -41.1667280
-280 11 4 10.13 mm water 7.5448704
-281 11 5 10.13 mm water 68.1300635
-282 11 6 10.13 mm water 69.5883298
-283 11 7 10.13 mm water 19.2286702
-284 11 8 10.13 mm water 11.5597274
-285 11 9 10.13 mm water -11.5239830
-286 11 10 10.13 mm water -20.2507556
-287 11 11 10.13 mm water 5.8153223
-288 11 12 10.13 mm water 28.5904048
+18 3 7 control 100.0000000
+19 3 8 control 100.0000000
+20 3 9 control 100.0000000
+21 3 10 control 100.0000000
+22 3 11 control 100.0000000
+23 3 12 control 100.0000000
+24 5 1 control 100.0000000
+25 5 2 control 100.0000000
+26 5 3 control 100.0000000
+27 5 4 control 100.0000000
+28 5 5 control 100.0000000
+29 5 6 control 100.0000000
+30 5 7 control 100.0000000
+31 5 8 control 100.0000000
+32 5 9 control 100.0000000
+33 5 10 control 100.0000000
+34 5 11 control 100.0000000
+35 5 12 control 100.0000000
+36 7 1 control 100.0000000
+37 7 2 control 100.0000000
+38 7 3 control 100.0000000
+39 7 4 control 100.0000000
+40 7 5 control 100.0000000
+41 7 6 control 100.0000000
+42 7 7 control 100.0000000
+43 7 8 control 100.0000000
+44 7 9 control 100.0000000
+45 7 10 control 100.0000000
+46 7 11 control 100.0000000
+47 7 12 control 100.0000000
+48 9 1 control 100.0000000
+49 9 2 control 100.0000000
+50 9 3 control 100.0000000
+51 9 4 control 100.0000000
+52 9 5 control 100.0000000
+53 9 6 control 100.0000000
+54 9 7 control 100.0000000
+55 9 8 control 100.0000000
+56 9 9 control 100.0000000
+57 9 10 control 100.0000000
+58 9 11 control 100.0000000
+59 9 12 control 100.0000000
+60 11 1 control 100.0000000
+61 11 2 control 100.0000000
+62 11 3 control 100.0000000
+63 11 4 control 100.0000000
+64 11 5 control 100.0000000
+65 11 6 control 100.0000000
+66 11 7 control 100.0000000
+67 11 8 control 100.0000000
+68 11 9 control 100.0000000
+69 11 10 control 100.0000000
+70 11 11 control 100.0000000
+71 11 12 control 100.0000000
+72 1 1 2.53 mm water 52.6908320
+73 1 2 2.53 mm water 100.0000000
+74 1 3 2.53 mm water -39.2410890
+75 1 4 2.53 mm water 100.0000000
+76 1 5 2.53 mm water 100.0000000
+77 1 6 2.53 mm water -37.4344356
+78 1 7 2.53 mm water 100.0000000
+79 1 8 2.53 mm water 100.0000000
+80 1 9 2.53 mm water 100.0000000
+81 1 10 2.53 mm water 86.4944778
+82 1 11 2.53 mm water 100.0000000
+83 1 12 2.53 mm water 100.0000000
+84 3 1 2.53 mm water -288.6255924
+85 3 2 2.53 mm water 100.0000000
+86 3 3 2.53 mm water 33.2750158
+87 3 4 2.53 mm water 58.7513498
+88 3 5 2.53 mm water 88.4416485
+89 3 7 2.53 mm water 100.0000000
+90 3 8 2.53 mm water 87.6786880
+91 3 9 2.53 mm water 78.9401553
+92 3 10 2.53 mm water 76.8076923
+93 3 11 2.53 mm water 100.0000000
+94 3 12 2.53 mm water 100.0000000
+95 5 1 2.53 mm water 99.1193938
+96 5 2 2.53 mm water 47.4803665
+97 5 3 2.53 mm water 30.8828765
+98 5 4 2.53 mm water 53.7238614
+99 5 5 2.53 mm water 74.0067878
+100 5 6 2.53 mm water 100.0000000
+101 5 7 2.53 mm water 32.9122340
+102 5 8 2.53 mm water 94.0698855
+103 5 9 2.53 mm water 53.9133943
+104 5 10 2.53 mm water 26.2422360
+105 5 11 2.53 mm water -621.7592593
+106 5 12 2.53 mm water 100.0000000
+107 7 1 2.53 mm water 14.7779479
+108 7 2 2.53 mm water 78.7265366
+109 7 3 2.53 mm water 100.0000000
+110 7 4 2.53 mm water 53.9228139
+111 7 5 2.53 mm water 75.1817906
+112 7 6 2.53 mm water 59.6403820
+113 7 7 2.53 mm water 100.0000000
+114 7 8 2.53 mm water 99.6515865
+115 7 9 2.53 mm water 75.6080989
+116 7 10 2.53 mm water 100.0000000
+117 7 11 2.53 mm water -65.3975143
+118 7 12 2.53 mm water 100.0000000
+119 9 1 2.53 mm water 1.3790784
+120 9 2 2.53 mm water 16.8433893
+121 9 3 2.53 mm water 75.0565262
+122 9 4 2.53 mm water 35.2263143
+123 9 5 2.53 mm water 74.6848841
+124 9 6 2.53 mm water 13.3688514
+125 9 7 2.53 mm water 36.2177470
+126 9 8 2.53 mm water 61.0829715
+127 9 9 2.53 mm water 38.2954360
+128 9 10 2.53 mm water 40.8685843
+129 9 11 2.53 mm water 58.1864842
+130 9 12 2.53 mm water 76.6523950
+131 11 1 2.53 mm water -10.5815603
+132 11 2 2.53 mm water 39.0281009
+133 11 3 2.53 mm water 50.6993007
+134 11 4 2.53 mm water -9.4283182
+135 11 5 2.53 mm water 76.2754543
+136 11 6 2.53 mm water 13.1042156
+137 11 7 2.53 mm water 37.6023285
+138 11 8 2.53 mm water 68.8054520
+139 11 9 2.53 mm water 11.3296903
+140 11 10 2.53 mm water 47.7443188
+141 11 11 2.53 mm water 62.8196073
+142 11 12 2.53 mm water 65.0257853
+143 1 1 5.07 mm water 100.0000000
+144 1 2 5.07 mm water 99.1728029
+145 1 3 5.07 mm water 100.0000000
+146 1 4 5.07 mm water 50.5431971
+147 1 5 5.07 mm water 84.9044166
+148 1 6 5.07 mm water -49.9201824
+149 1 7 5.07 mm water -18.0063316
+150 1 8 5.07 mm water 41.1793349
+151 1 9 5.07 mm water 71.3657916
+152 1 10 5.07 mm water 100.0000000
+153 1 11 5.07 mm water -34.4072670
+154 1 12 5.07 mm water 37.1041879
+155 3 1 5.07 mm water 66.3713167
+156 3 2 5.07 mm water 75.5014606
+157 3 3 5.07 mm water 100.0000000
+158 3 4 5.07 mm water 100.0000000
+159 3 5 5.07 mm water 100.0000000
+160 3 7 5.07 mm water 13.9687679
+161 3 8 5.07 mm water 86.5212974
+162 3 9 5.07 mm water 100.0000000
+163 3 10 5.07 mm water 100.0000000
+164 3 11 5.07 mm water 82.6100339
+165 3 12 5.07 mm water 59.1916291
+166 5 1 5.07 mm water 83.8214213
+167 5 2 5.07 mm water -18.9790576
+168 5 3 5.07 mm water -4.0227839
+169 5 4 5.07 mm water 72.7298768
+170 5 5 5.07 mm water 65.8015572
+171 5 6 5.07 mm water 83.8168517
+172 5 7 5.07 mm water 100.0000000
+173 5 8 5.07 mm water 56.9377990
+174 5 9 5.07 mm water 69.6476600
+175 5 10 5.07 mm water -100.0000000
+176 5 11 5.07 mm water -1688.8888889
+177 5 12 5.07 mm water 36.4766596
+178 7 1 5.07 mm water 27.4775760
+179 7 2 5.07 mm water -92.6941480
+180 7 3 5.07 mm water 26.9539895
+181 7 4 5.07 mm water 49.3404983
+182 7 5 5.07 mm water 97.2753747
+183 7 6 5.07 mm water 52.9462489
+184 7 7 5.07 mm water -9.2241934
+185 7 8 5.07 mm water 82.4117663
+186 7 9 5.07 mm water 76.0972958
+187 7 10 5.07 mm water 77.1613833
+188 7 11 5.07 mm water -19.1753798
+189 7 12 5.07 mm water 100.0000000
+190 9 1 5.07 mm water 20.6076914
+191 9 2 5.07 mm water 37.7498358
+192 9 3 5.07 mm water 80.6474820
+193 9 4 5.07 mm water 30.2783244
+194 9 5 5.07 mm water 48.1477918
+195 9 6 5.07 mm water 0.4832115
+196 9 7 5.07 mm water -2.8634361
+197 9 8 5.07 mm water 0.6271105
+198 9 9 5.07 mm water -23.2619009
+199 9 10 5.07 mm water 33.3897349
+200 9 11 5.07 mm water -19.7604790
+201 9 12 5.07 mm water 13.8480064
+202 11 1 5.07 mm water 7.8156028
+203 11 2 5.07 mm water 57.1147306
+204 11 3 5.07 mm water 54.1221936
+205 11 4 5.07 mm water 15.3999557
+206 11 5 5.07 mm water 49.7810379
+207 11 6 5.07 mm water -11.8679688
+208 11 7 5.07 mm water -34.9099509
+209 11 8 5.07 mm water 18.9918992
+210 11 9 5.07 mm water 0.2671524
+211 11 10 5.07 mm water 22.2769506
+212 11 11 5.07 mm water -101.0265103
+213 11 12 5.07 mm water -1.8245038
+214 1 1 10.13 mm water 97.3192649
+215 1 2 10.13 mm water 100.0000000
+216 1 3 10.13 mm water -20.1499408
+217 1 4 10.13 mm water 17.8823935
+218 1 5 10.13 mm water 35.9591299
+219 1 6 10.13 mm water 100.0000000
+220 1 7 10.13 mm water -14.5780249
+221 1 8 10.13 mm water 91.5420948
+222 1 9 10.13 mm water 93.8629968
+223 1 10 10.13 mm water 66.6101400
+224 1 11 10.13 mm water 100.0000000
+225 1 12 10.13 mm water 100.0000000
+226 3 1 10.13 mm water -117.8446322
+227 3 2 10.13 mm water 100.0000000
+228 3 3 10.13 mm water 46.5908539
+229 3 4 10.13 mm water 100.0000000
+230 3 5 10.13 mm water 52.1831849
+231 3 7 10.13 mm water 12.6547324
+232 3 8 10.13 mm water 100.0000000
+233 3 9 10.13 mm water 100.0000000
+234 3 10 10.13 mm water 100.0000000
+235 3 11 10.13 mm water 52.0467836
+236 3 12 10.13 mm water 59.9097251
+237 5 1 10.13 mm water 100.0000000
+238 5 2 10.13 mm water -67.3429319
+239 5 3 10.13 mm water 97.2232111
+240 5 4 10.13 mm water 54.4829562
+241 5 5 10.13 mm water 26.0131763
+242 5 6 10.13 mm water 54.0237134
+243 5 7 10.13 mm water 28.8231383
+244 5 8 10.13 mm water 95.5342903
+245 5 9 10.13 mm water 33.4050565
+246 5 10 10.13 mm water -60.7763975
+247 5 11 10.13 mm water 100.0000000
+248 5 12 10.13 mm water -82.1018062
+249 7 1 10.13 mm water 34.3797856
+250 7 2 10.13 mm water -64.3540670
+251 7 3 10.13 mm water 37.1811299
+252 7 4 10.13 mm water 37.9286761
+253 7 5 10.13 mm water 77.4240232
+254 7 6 10.13 mm water 20.2836064
+255 7 7 10.13 mm water 40.3529736
+256 7 8 10.13 mm water 87.8986143
+257 7 9 10.13 mm water 13.7111021
+258 7 10 10.13 mm water 2.5216138
+259 7 11 10.13 mm water 37.3446439
+260 7 12 10.13 mm water 27.3481755
+261 9 1 10.13 mm water 47.9425945
+262 9 2 10.13 mm water 55.5315755
+263 9 3 10.13 mm water 19.3730730
+264 9 4 10.13 mm water 17.5897292
+265 9 5 10.13 mm water 66.0925623
+266 9 6 10.13 mm water 63.3502664
+267 9 7 10.13 mm water 11.5166772
+268 9 8 10.13 mm water -3.1717318
+269 9 9 10.13 mm water -11.5164404
+270 9 10 10.13 mm water 8.1331077
+271 9 11 10.13 mm water -44.3284859
+272 9 12 10.13 mm water 20.9392561
+273 11 1 10.13 mm water 53.7163121
+274 11 2 10.13 mm water 62.7170217
+275 11 3 10.13 mm water -41.1667280
+276 11 4 10.13 mm water 7.5448704
+277 11 5 10.13 mm water 68.1300635
+278 11 6 10.13 mm water 69.5883298
+279 11 7 10.13 mm water 19.2286702
+280 11 8 10.13 mm water 11.5597274
+281 11 9 10.13 mm water -11.5239830
+282 11 10 10.13 mm water -20.2507556
+283 11 11 10.13 mm water 5.8153223
+284 11 12 10.13 mm water 28.5904048
We can summarize the average area per DAI and Treatment, which will allow us to plot the data in the manner of Morini et al. 2017.
> avgs <- percents %>%
+ group_by(DAI, Treatment) %>%
-+ summarize(meanArea = mean(Area)) %>%
++ summarize(meanArea = mean(Area, na.rm = TRUE)) %>%
+ ungroup()
> avgs
# A tibble: 24 x 3
DAI Treatment meanArea
<int> <fct> <dbl>
- 1 1 control 100
+ 1 1 control 100.
2 1 2.53 mm water 71.9
3 1 5.07 mm water 48.5
4 1 10.13 mm water 64.0
- 5 3 control NaN
- 6 3 2.53 mm water -Inf
- 7 3 5.07 mm water NaN
- 8 3 10.13 mm water NaN
- 9 5 control 100
+ 5 3 control 100.
+ 6 3 2.53 mm water 48.7
+ 7 3 5.07 mm water 80.4
+ 8 3 10.13 mm water 55.0
+ 9 5 control 100.
10 5 2.53 mm water 7.55
# ... with 14 more rows
Now that we have our averages, we can plot it using ggplot2
@@ -919,8 +917,8 @@Warning: Removed 5 rows containing non-finite values (stat_smooth).
-Warning: Removed 4 rows containing missing values (geom_point).
+Warning: Removed 1 rows containing non-finite values (stat_smooth).
+Warning: Removed 1 rows containing missing values (geom_point).
Warning: Removed 41 rows containing non-finite values (stat_smooth).
-Warning: Removed 40 rows containing missing values (geom_point).
+Warning: Removed 37 rows containing non-finite values (stat_smooth).
+Warning: Removed 37 rows containing missing values (geom_point).
Warning: Removed 80 rows containing missing values (geom_smooth).
With ggplot2, we can spread the data out into “facets”:
@@ -956,8 +954,8 @@Warning: Removed 41 rows containing non-finite values (stat_smooth).
-Warning: Removed 40 rows containing missing values (geom_point).
+Warning: Removed 37 rows containing non-finite values (stat_smooth).
+Warning: Removed 37 rows containing missing values (geom_point).
Warning: Removed 80 rows containing missing values (geom_smooth).
diff --git a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-12-1.png b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-12-1.png
index 2586b40..42b9f03 100644
Binary files a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-12-1.png and b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-13-1.png b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-13-1.png
index 02c33df..adf9ca8 100644
Binary files a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-13-1.png and b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-14-1.png b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-14-1.png
index 13864d4..42349b3 100644
Binary files a/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-14-1.png and b/docs/Part2-Fig2Recreation_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/site_libs/highlightjs-1.1/default.css b/docs/site_libs/highlightjs-1.1/default.css
deleted file mode 100644
index 17d80de..0000000
--- a/docs/site_libs/highlightjs-1.1/default.css
+++ /dev/null
@@ -1,30 +0,0 @@
-pre .operator,
-pre .paren {
- color: rgb(104, 118, 135)
-}
-
-pre .literal {
- color: #990073
-}
-
-pre .number {
- color: #099;
-}
-
-pre .comment {
- color: #998;
- font-style: italic
-}
-
-pre .keyword {
- color: #900;
- font-weight: bold
-}
-
-pre .identifier {
- color: rgb(0, 0, 0);
-}
-
-pre .string {
- color: #d14;
-}
diff --git a/docs/site_libs/highlightjs-1.1/highlight.js b/docs/site_libs/highlightjs-1.1/highlight.js
deleted file mode 100644
index c12ccc2..0000000
--- a/docs/site_libs/highlightjs-1.1/highlight.js
+++ /dev/null
@@ -1,3 +0,0 @@
-var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=(""+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r"+y.value+"
";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p