Notice: This document is a work-in-progress for researchers and implementers.
- Ethereum 2.0 Phase 0 -- The Beacon Chain
- Table of contents
- Introduction
- Notation
- Terminology
- Constants
- Data structures
- Custom types
- Helper functions
xor
hash
hash_tree_root
signing_root
bls_domain
slot_to_epoch
get_previous_epoch
get_current_epoch
get_epoch_start_slot
is_active_validator
is_slashable_validator
get_active_validator_indices
increase_balance
decrease_balance
get_epoch_committee_count
get_shard_delta
get_epoch_start_shard
get_attestation_data_slot
get_block_root_at_slot
get_block_root
get_randao_mix
get_active_index_root
generate_seed
get_beacon_proposer_index
verify_merkle_branch
get_shuffled_index
compute_committee
get_crosslink_committee
get_attesting_indices
int_to_bytes
bytes_to_int
get_total_balance
get_domain
get_bitfield_bit
verify_bitfield
convert_to_indexed
validate_indexed_attestation
is_slashable_attestation_data
integer_squareroot
get_delayed_activation_exit_epoch
get_churn_limit
bls_verify
bls_verify_multiple
bls_aggregate_pubkeys
- Routines for updating validator status
- Genesis
- Beacon chain state transition function
This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.
At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0, the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when Ethereum 1.0 deposit receipts are processed by the beacon chain, the activation balance is reached, and a queuing process is completed. Exit is either voluntary or done forcibly as a penalty for misbehavior.
The primary source of load on the beacon chain is "attestations". Attestations are simultaneously availability votes for a shard block and proof-of-stake votes for a beacon block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.
Code snippets appearing in this style
are to be interpreted as Python code.
- Validator—a registered participant in the beacon chain. You can become one by sending ether into the Ethereum 1.0 deposit contract.
- Active validator—an active participant in the Ethereum 2.0 consensus invited to, among other things, propose and attest to blocks and vote for crosslinks.
- Committee—a (pseudo-) randomly sampled subset of active validators. When a committee is referred to collectively, as in "this committee attests to X", this is assumed to mean "some subset of that committee that contains enough validators that the protocol recognizes it as representing the committee".
- Proposer—the validator that creates a beacon chain block.
- Attester—a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a link (crosslink) to a recent shard block on a particular shard chain.
- Beacon chain—the central PoS chain that is the base of the sharding system.
- Shard chain—one of the chains on which user transactions take place and account data is stored.
- Block root—a 32-byte Merkle root of a beacon chain block or shard chain block. Previously called "block hash".
- Crosslink—a set of signatures from a committee attesting to a block in a shard chain that can be included into the beacon chain. Crosslinks are the main means by which the beacon chain "learns about" the updated state of shard chains.
- Slot—a period during which one proposer has the ability to create a beacon chain block and some attesters have the ability to make attestations.
- Epoch—an aligned span of slots during which all validators get exactly one chance to make an attestation.
- Finalized, justified—see the Casper FFG paper.
- Withdrawal period—the number of slots between a validator exit and the validator balance being withdrawable.
- Genesis time—the Unix time of the genesis beacon chain block at slot 0.
Note: The default mainnet values for the constants are included here for spec-design purposes.
The different configurations for mainnet, testnets, and YAML-based testing can be found in the configs/constant_presets/
directory.
These configurations are updated for releases, but may be out of sync during dev
changes.
Name | Value |
---|---|
SHARD_COUNT |
2**10 (= 1,024) |
TARGET_COMMITTEE_SIZE |
2**7 (= 128) |
MAX_INDICES_PER_ATTESTATION |
2**12 (= 4,096) |
MIN_PER_EPOCH_CHURN_LIMIT |
2**2 (= 4) |
CHURN_LIMIT_QUOTIENT |
2**16 (= 65,536) |
BASE_REWARDS_PER_EPOCH |
5 |
SHUFFLE_ROUND_COUNT |
90 |
- For the safety of crosslinks
TARGET_COMMITTEE_SIZE
exceeds the recommended minimum committee size of 111; with sufficient active validators (at leastSLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE
), the shuffling algorithm ensures committee sizes of at leastTARGET_COMMITTEE_SIZE
. (Unbiasable randomness with a Verifiable Delay Function (VDF) will improve committee robustness and lower the safe minimum committee size.)
Name | Value |
---|---|
DEPOSIT_CONTRACT_TREE_DEPTH |
2**5 (= 32) |
Name | Value | Unit |
---|---|---|
MIN_DEPOSIT_AMOUNT |
2**0 * 10**9 (= 1,000,000,000) |
Gwei |
MAX_EFFECTIVE_BALANCE |
2**5 * 10**9 (= 32,000,000,000) |
Gwei |
EJECTION_BALANCE |
2**4 * 10**9 (= 16,000,000,000) |
Gwei |
EFFECTIVE_BALANCE_INCREMENT |
2**0 * 10**9 (= 1,000,000,000) |
Gwei |
Name | Value |
---|---|
GENESIS_SLOT |
0 |
GENESIS_EPOCH |
0 |
FAR_FUTURE_EPOCH |
2**64 - 1 |
ZERO_HASH |
b'\x00' * 32 |
BLS_WITHDRAWAL_PREFIX |
0 |
Name | Value | Unit | Duration |
---|---|---|---|
MIN_ATTESTATION_INCLUSION_DELAY |
2**2 (= 4) |
slots | 24 seconds |
SLOTS_PER_EPOCH |
2**6 (= 64) |
slots | 6.4 minutes |
MIN_SEED_LOOKAHEAD |
2**0 (= 1) |
epochs | 6.4 minutes |
ACTIVATION_EXIT_DELAY |
2**2 (= 4) |
epochs | 25.6 minutes |
SLOTS_PER_ETH1_VOTING_PERIOD |
2**10 (= 1,024) |
slots | ~1.7 hours |
SLOTS_PER_HISTORICAL_ROOT |
2**13 (= 8,192) |
slots | ~13 hours |
MIN_VALIDATOR_WITHDRAWABILITY_DELAY |
2**8 (= 256) |
epochs | ~27 hours |
PERSISTENT_COMMITTEE_PERIOD |
2**11 (= 2,048) |
epochs | 9 days |
MAX_EPOCHS_PER_CROSSLINK |
2**6 (= 64) |
epochs | ~7 hours |
MIN_EPOCHS_TO_INACTIVITY_PENALTY |
2**2 (= 4) |
epochs | 25.6 minutes |
MAX_EPOCHS_PER_CROSSLINK
should be a small constant timesSHARD_COUNT // SLOTS_PER_EPOCH
Name | Value | Unit | Duration |
---|---|---|---|
LATEST_RANDAO_MIXES_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_ACTIVE_INDEX_ROOTS_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
LATEST_SLASHED_EXIT_LENGTH |
2**13 (= 8,192) |
epochs | ~36 days |
Name | Value |
---|---|
BASE_REWARD_FACTOR |
2**5 (= 32) |
WHISTLEBLOWING_REWARD_QUOTIENT |
2**9 (= 512) |
PROPOSER_REWARD_QUOTIENT |
2**3 (= 8) |
INACTIVITY_PENALTY_QUOTIENT |
2**25 (= 33,554,432) |
MIN_SLASHING_PENALTY_QUOTIENT |
2**5 (= 32) |
- The
BASE_REWARD_FACTOR
is NOT final. Once all other protocol details are finalized, it will be adjusted to target a theoretical maximum total issuance of2**21
ETH per year if2**27
ETH is validating (and therefore2**20
per year if2**25
ETH is validating, etc.) - The
INACTIVITY_PENALTY_QUOTIENT
equalsINVERSE_SQRT_E_DROP_TIME**2
whereINVERSE_SQRT_E_DROP_TIME := 2**12 epochs
(~18 days) is the time it takes the inactivity penalty to reduce the balance of non-participating validators to about1/sqrt(e) ~= 60.6%
. Indeed, the balance retained by offline validators aftern
epochs is about(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(n**2/2)
so afterINVERSE_SQRT_E_DROP_TIME
epochs it is roughly(1 - 1/INACTIVITY_PENALTY_QUOTIENT)**(INACTIVITY_PENALTY_QUOTIENT/2) ~= 1/sqrt(e)
.
Name | Value |
---|---|
MAX_PROPOSER_SLASHINGS |
2**4 (= 16) |
MAX_ATTESTER_SLASHINGS |
2**0 (= 1) |
MAX_ATTESTATIONS |
2**7 (= 128) |
MAX_DEPOSITS |
2**4 (= 16) |
MAX_VOLUNTARY_EXITS |
2**4 (= 16) |
MAX_TRANSFERS |
0 |
Name | Value |
---|---|
DOMAIN_BEACON_PROPOSER |
0 |
DOMAIN_RANDAO |
1 |
DOMAIN_ATTESTATION |
2 |
DOMAIN_DEPOSIT |
3 |
DOMAIN_VOLUNTARY_EXIT |
4 |
DOMAIN_TRANSFER |
5 |
The following data structures are defined as SimpleSerialize (SSZ) objects.
The types are defined topologically to aid in facilitating an executable version of the spec.
class Fork(Container):
# Previous fork version
previous_version: Bytes4
# Current fork version
current_version: Bytes4
# Fork epoch number
epoch: uint64
class Validator(Container):
# BLS public key
pubkey: Bytes48
# Withdrawal credentials
withdrawal_credentials: Bytes32
# Epoch when became eligible for activation
activation_eligibility_epoch: uint64
# Epoch when validator activated
activation_epoch: uint64
# Epoch when validator exited
exit_epoch: uint64
# Epoch when validator is eligible to withdraw
withdrawable_epoch: uint64
# Was the validator slashed
slashed: bool
# Effective balance
effective_balance: uint64
class Crosslink(Container):
# Shard number
shard: uint64
# Crosslinking data from epochs [start....end-1]
start_epoch: uint64
end_epoch: uint64
# Root of the previous crosslink
parent_root: Bytes32
# Root of the crosslinked shard data since the previous crosslink
data_root: Bytes32
class AttestationData(Container):
# LMD GHOST vote
beacon_block_root: Bytes32
# FFG vote
source_epoch: uint64
source_root: Bytes32
target_epoch: uint64
target_root: Bytes32
# Crosslink vote
crosslink: Crosslink
class AttestationDataAndCustodyBit(Container):
# Attestation data
data: AttestationData
# Custody bit
custody_bit: bool
class IndexedAttestation(Container):
# Validator indices
custody_bit_0_indices: List[uint64]
custody_bit_1_indices: List[uint64]
# Attestation data
data: AttestationData
# Aggregate signature
signature: Bytes96
class PendingAttestation(Container):
# Attester aggregation bitfield
aggregation_bitfield: bytes
# Attestation data
data: AttestationData
# Inclusion delay
inclusion_delay: uint64
# Proposer index
proposer_index: uint64
class Eth1Data(Container):
# Root of the deposit tree
deposit_root: Bytes32
# Total number of deposits
deposit_count: uint64
# Block hash
block_hash: Bytes32
class HistoricalBatch(Container):
# Block roots
block_roots: Vector[Bytes32, SLOTS_PER_HISTORICAL_ROOT]
# State roots
state_roots: Vector[Bytes32, SLOTS_PER_HISTORICAL_ROOT]
class DepositData(Container):
# BLS pubkey
pubkey: Bytes48
# Withdrawal credentials
withdrawal_credentials: Bytes32
# Amount in Gwei
amount: uint64
# Container self-signature
signature: Bytes96
class BeaconBlockHeader(Container):
slot: uint64
parent_root: Bytes32
state_root: Bytes32
body_root: Bytes32
signature: Bytes96
class ProposerSlashing(Container):
# Proposer index
proposer_index: uint64
# First block header
header_1: BeaconBlockHeader
# Second block header
header_2: BeaconBlockHeader
class AttesterSlashing(Container):
# First attestation
attestation_1: IndexedAttestation
# Second attestation
attestation_2: IndexedAttestation
class Attestation(Container):
# Attester aggregation bitfield
aggregation_bitfield: bytes
# Attestation data
data: AttestationData
# Custody bitfield
custody_bitfield: bytes
# BLS aggregate signature
signature: Bytes96
class Deposit(Container):
# Branch in the deposit tree
proof: Vector[Bytes32, DEPOSIT_CONTRACT_TREE_DEPTH]
# Data
data: DepositData
class VoluntaryExit(Container):
# Minimum epoch for processing exit
epoch: uint64
# Index of the exiting validator
validator_index: uint64
# Validator signature
signature: Bytes96
class Transfer(Container):
# Sender index
sender: uint64
# Recipient index
recipient: uint64
# Amount in Gwei
amount: uint64
# Fee in Gwei for block proposer
fee: uint64
# Inclusion slot
slot: uint64
# Sender withdrawal pubkey
pubkey: Bytes48
# Sender signature
signature: Bytes96
class BeaconBlockBody(Container):
randao_reveal: Bytes96
eth1_data: Eth1Data
graffiti: Bytes32
proposer_slashings: List[ProposerSlashing]
attester_slashings: List[AttesterSlashing]
attestations: List[Attestation]
deposits: List[Deposit]
voluntary_exits: List[VoluntaryExit]
transfers: List[Transfer]
class BeaconBlock(Container):
# Header
slot: uint64
parent_root: Bytes32
state_root: Bytes32
body: BeaconBlockBody
signature: Bytes96
class BeaconState(Container):
# Misc
slot: uint64
genesis_time: uint64
fork: Fork # For versioning hard forks
# Validator registry
validator_registry: List[Validator]
balances: List[uint64]
# Randomness and committees
latest_randao_mixes: Vector[Bytes32, LATEST_RANDAO_MIXES_LENGTH]
latest_start_shard: uint64
# Finality
previous_epoch_attestations: List[PendingAttestation]
current_epoch_attestations: List[PendingAttestation]
previous_justified_epoch: uint64
current_justified_epoch: uint64
previous_justified_root: Bytes32
current_justified_root: Bytes32
justification_bitfield: uint64
finalized_epoch: uint64
finalized_root: Bytes32
# Recent state
current_crosslinks: Vector[Crosslink, SHARD_COUNT]
previous_crosslinks: Vector[Crosslink, SHARD_COUNT]
latest_block_roots: Vector[Bytes32, SLOTS_PER_HISTORICAL_ROOT]
latest_state_roots: Vector[Bytes32, SLOTS_PER_HISTORICAL_ROOT]
latest_active_index_roots: Vector[Bytes32, LATEST_ACTIVE_INDEX_ROOTS_LENGTH]
latest_slashed_balances: Vector[uint64, LATEST_SLASHED_EXIT_LENGTH]
latest_block_header: BeaconBlockHeader
historical_roots: List[Bytes32]
# Ethereum 1.0 chain data
latest_eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data]
deposit_index: uint64
We define the following Python custom types for type hinting and readability:
Name | SSZ equivalent | Description |
---|---|---|
Slot |
uint64 |
a slot number |
Epoch |
uint64 |
an epoch number |
Shard |
uint64 |
a shard number |
ValidatorIndex |
uint64 |
a validator registry index |
Gwei |
uint64 |
an amount in Gwei |
BLSPubkey |
Bytes48 |
a BLS12-381 public key |
BLSSignature |
Bytes96 |
a BLS12-381 signature |
Note: The definitions below are for specification purposes and are not necessarily optimal implementations.
def xor(bytes1: Bytes32, bytes2: Bytes32) -> Bytes32:
return Bytes32(a ^ b for a, b in zip(bytes1, bytes2))
The hash
function is SHA256.
Note: We aim to migrate to a S[T/N]ARK-friendly hash function in a future Ethereum 2.0 deployment phase.
def hash_tree_root(object: SSZSerializable) -> Bytes32
is a function for hashing objects into a single root utilizing a hash tree structure. hash_tree_root
is defined in the SimpleSerialize spec.
def signing_root(object: Container) -> Bytes32
is a function defined in the SimpleSerialize spec to compute signing messages.
def bls_domain(domain_type: int, fork_version: bytes=b'\x00\x00\x00\x00') -> int:
"""
Return the bls domain given by the ``domain_type`` and optional 4 byte ``fork_version`` (defaults to zero).
"""
return bytes_to_int(int_to_bytes(domain_type, length=4) + fork_version)
def slot_to_epoch(slot: Slot) -> Epoch:
"""
Return the epoch number of the given ``slot``.
"""
return slot // SLOTS_PER_EPOCH
def get_previous_epoch(state: BeaconState) -> Epoch:
"""`
Return the previous epoch of the given ``state``.
Return the current epoch if it's genesis epoch.
"""
current_epoch = get_current_epoch(state)
return GENESIS_EPOCH if current_epoch == GENESIS_EPOCH else current_epoch - 1
def get_current_epoch(state: BeaconState) -> Epoch:
"""
Return the current epoch of the given ``state``.
"""
return slot_to_epoch(state.slot)
def get_epoch_start_slot(epoch: Epoch) -> Slot:
"""
Return the starting slot of the given ``epoch``.
"""
return epoch * SLOTS_PER_EPOCH
def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is active.
"""
return validator.activation_epoch <= epoch < validator.exit_epoch
def is_slashable_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is slashable.
"""
return validator.slashed is False and (validator.activation_epoch <= epoch < validator.withdrawable_epoch)
def get_active_validator_indices(state: BeaconState, epoch: Epoch) -> List[ValidatorIndex]:
"""
Get active validator indices at ``epoch``.
"""
return [i for i, v in enumerate(state.validator_registry) if is_active_validator(v, epoch)]
def increase_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Increase validator balance by ``delta``.
"""
state.balances[index] += delta
def decrease_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Decrease validator balance by ``delta`` with underflow protection.
"""
state.balances[index] = 0 if delta > state.balances[index] else state.balances[index] - delta
def get_epoch_committee_count(state: BeaconState, epoch: Epoch) -> int:
"""
Return the number of committees at ``epoch``.
"""
active_validator_indices = get_active_validator_indices(state, epoch)
return max(
1,
min(
SHARD_COUNT // SLOTS_PER_EPOCH,
len(active_validator_indices) // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE,
)
) * SLOTS_PER_EPOCH
def get_shard_delta(state: BeaconState, epoch: Epoch) -> int:
"""
Return the number of shards to increment ``state.latest_start_shard`` during ``epoch``.
"""
return min(get_epoch_committee_count(state, epoch), SHARD_COUNT - SHARD_COUNT // SLOTS_PER_EPOCH)
def get_epoch_start_shard(state: BeaconState, epoch: Epoch) -> Shard:
assert epoch <= get_current_epoch(state) + 1
check_epoch = get_current_epoch(state) + 1
shard = (state.latest_start_shard + get_shard_delta(state, get_current_epoch(state))) % SHARD_COUNT
while check_epoch > epoch:
check_epoch -= 1
shard = (shard + SHARD_COUNT - get_shard_delta(state, check_epoch)) % SHARD_COUNT
return shard
def get_attestation_data_slot(state: BeaconState, data: AttestationData) -> Slot:
committee_count = get_epoch_committee_count(state, data.target_epoch)
offset = (data.crosslink.shard + SHARD_COUNT - get_epoch_start_shard(state, data.target_epoch)) % SHARD_COUNT
return get_epoch_start_slot(data.target_epoch) + offset // (committee_count // SLOTS_PER_EPOCH)
def get_block_root_at_slot(state: BeaconState,
slot: Slot) -> Bytes32:
"""
Return the block root at a recent ``slot``.
"""
assert slot < state.slot <= slot + SLOTS_PER_HISTORICAL_ROOT
return state.latest_block_roots[slot % SLOTS_PER_HISTORICAL_ROOT]
def get_block_root(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the block root at a recent ``epoch``.
"""
return get_block_root_at_slot(state, get_epoch_start_slot(epoch))
def get_randao_mix(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the randao mix at a recent ``epoch``.
``epoch`` expected to be between (current_epoch - LATEST_RANDAO_MIXES_LENGTH, current_epoch].
"""
return state.latest_randao_mixes[epoch % LATEST_RANDAO_MIXES_LENGTH]
def get_active_index_root(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Return the index root at a recent ``epoch``.
``epoch`` expected to be between
(current_epoch - LATEST_ACTIVE_INDEX_ROOTS_LENGTH + ACTIVATION_EXIT_DELAY, current_epoch + ACTIVATION_EXIT_DELAY].
"""
return state.latest_active_index_roots[epoch % LATEST_ACTIVE_INDEX_ROOTS_LENGTH]
def generate_seed(state: BeaconState,
epoch: Epoch) -> Bytes32:
"""
Generate a seed for the given ``epoch``.
"""
return hash(
get_randao_mix(state, epoch + LATEST_RANDAO_MIXES_LENGTH - MIN_SEED_LOOKAHEAD) +
get_active_index_root(state, epoch) +
int_to_bytes(epoch, length=32)
)
def get_beacon_proposer_index(state: BeaconState) -> ValidatorIndex:
"""
Return the current beacon proposer index.
"""
epoch = get_current_epoch(state)
committees_per_slot = get_epoch_committee_count(state, epoch) // SLOTS_PER_EPOCH
offset = committees_per_slot * (state.slot % SLOTS_PER_EPOCH)
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
first_committee = get_crosslink_committee(state, epoch, shard)
MAX_RANDOM_BYTE = 2**8 - 1
seed = generate_seed(state, epoch)
i = 0
while True:
candidate_index = first_committee[(epoch + i) % len(first_committee)]
random_byte = hash(seed + int_to_bytes(i // 32, length=8))[i % 32]
effective_balance = state.validator_registry[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:
return candidate_index
i += 1
def verify_merkle_branch(leaf: Bytes32, proof: List[Bytes32], depth: int, index: int, root: Bytes32) -> bool:
"""
Verify that the given ``leaf`` is on the merkle branch ``proof``
starting with the given ``root``.
"""
value = leaf
for i in range(depth):
if index // (2**i) % 2:
value = hash(proof[i] + value)
else:
value = hash(value + proof[i])
return value == root
def get_shuffled_index(index: ValidatorIndex, index_count: int, seed: Bytes32) -> ValidatorIndex:
"""
Return the shuffled validator index corresponding to ``seed`` (and ``index_count``).
"""
assert index < index_count
assert index_count <= 2**40
# Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
# See the 'generalized domain' algorithm on page 3
for round in range(SHUFFLE_ROUND_COUNT):
pivot = bytes_to_int(hash(seed + int_to_bytes(round, length=1))[0:8]) % index_count
flip = (pivot + index_count - index) % index_count
position = max(index, flip)
source = hash(seed + int_to_bytes(round, length=1) + int_to_bytes(position // 256, length=4))
byte = source[(position % 256) // 8]
bit = (byte >> (position % 8)) % 2
index = flip if bit else index
return index
def compute_committee(indices: List[ValidatorIndex], seed: Bytes32, index: int, count: int) -> List[ValidatorIndex]:
start = (len(indices) * index) // count
end = (len(indices) * (index + 1)) // count
return [indices[get_shuffled_index(i, len(indices), seed)] for i in range(start, end)]
def get_crosslink_committee(state: BeaconState, epoch: Epoch, shard: Shard) -> List[ValidatorIndex]:
return compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=generate_seed(state, epoch),
index=(shard + SHARD_COUNT - get_epoch_start_shard(state, epoch)) % SHARD_COUNT,
count=get_epoch_committee_count(state, epoch),
)
def get_attesting_indices(state: BeaconState,
attestation_data: AttestationData,
bitfield: bytes) -> List[ValidatorIndex]:
"""
Return the sorted attesting indices corresponding to ``attestation_data`` and ``bitfield``.
"""
committee = get_crosslink_committee(state, attestation_data.target_epoch, attestation_data.crosslink.shard)
assert verify_bitfield(bitfield, len(committee))
return sorted([index for i, index in enumerate(committee) if get_bitfield_bit(bitfield, i) == 0b1])
def int_to_bytes(integer: int, length: int) -> bytes:
return integer.to_bytes(length, 'little')
def bytes_to_int(data: bytes) -> int:
return int.from_bytes(data, 'little')
def get_total_balance(state: BeaconState, indices: List[ValidatorIndex]) -> Gwei:
"""
Return the combined effective balance of the ``indices``. (1 Gwei minimum to avoid divisions by zero.)
"""
return max(sum([state.validator_registry[index].effective_balance for index in indices]), 1)
def get_domain(state: BeaconState,
domain_type: int,
message_epoch: int=None) -> int:
"""
Return the signature domain (fork version concatenated with domain type) of a message.
"""
epoch = get_current_epoch(state) if message_epoch is None else message_epoch
fork_version = state.fork.previous_version if epoch < state.fork.epoch else state.fork.current_version
return bls_domain(domain_type, fork_version)
def get_bitfield_bit(bitfield: bytes, i: int) -> int:
"""
Extract the bit in ``bitfield`` at position ``i``.
"""
return (bitfield[i // 8] >> (i % 8)) % 2
def verify_bitfield(bitfield: bytes, committee_size: int) -> bool:
"""
Verify ``bitfield`` against the ``committee_size``.
"""
if len(bitfield) != (committee_size + 7) // 8:
return False
# Check `bitfield` is padded with zero bits only
for i in range(committee_size, len(bitfield) * 8):
if get_bitfield_bit(bitfield, i) == 0b1:
return False
return True
def convert_to_indexed(state: BeaconState, attestation: Attestation) -> IndexedAttestation:
"""
Convert ``attestation`` to (almost) indexed-verifiable form.
"""
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bitfield)
custody_bit_1_indices = get_attesting_indices(state, attestation.data, attestation.custody_bitfield)
custody_bit_0_indices = [index for index in attesting_indices if index not in custody_bit_1_indices]
return IndexedAttestation(
custody_bit_0_indices=custody_bit_0_indices,
custody_bit_1_indices=custody_bit_1_indices,
data=attestation.data,
signature=attestation.signature,
)
def validate_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> None:
"""
Verify validity of ``indexed_attestation``.
"""
bit_0_indices = indexed_attestation.custody_bit_0_indices
bit_1_indices = indexed_attestation.custody_bit_1_indices
# Verify no index has custody bit equal to 1 [to be removed in phase 1]
assert len(bit_1_indices) == 0
# Verify max number of indices
assert len(bit_0_indices) + len(bit_1_indices) <= MAX_INDICES_PER_ATTESTATION
# Verify index sets are disjoint
assert len(set(bit_0_indices).intersection(bit_1_indices)) == 0
# Verify indices are sorted
assert bit_0_indices == sorted(bit_0_indices) and bit_1_indices == sorted(bit_1_indices)
# Verify aggregate signature
assert bls_verify_multiple(
pubkeys=[
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in bit_0_indices]),
bls_aggregate_pubkeys([state.validator_registry[i].pubkey for i in bit_1_indices]),
],
message_hashes=[
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b0)),
hash_tree_root(AttestationDataAndCustodyBit(data=indexed_attestation.data, custody_bit=0b1)),
],
signature=indexed_attestation.signature,
domain=get_domain(state, DOMAIN_ATTESTATION, indexed_attestation.data.target_epoch),
)
def is_slashable_attestation_data(data_1: AttestationData, data_2: AttestationData) -> bool:
"""
Check if ``data_1`` and ``data_2`` are slashable according to Casper FFG rules.
"""
return (
# Double vote
(data_1 != data_2 and data_1.target_epoch == data_2.target_epoch) or
# Surround vote
(data_1.source_epoch < data_2.source_epoch and data_2.target_epoch < data_1.target_epoch)
)
def integer_squareroot(n: int) -> int:
"""
The largest integer ``x`` such that ``x**2`` is less than or equal to ``n``.
"""
assert n >= 0
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
def get_delayed_activation_exit_epoch(epoch: Epoch) -> Epoch:
"""
Return the epoch at which an activation or exit triggered in ``epoch`` takes effect.
"""
return epoch + 1 + ACTIVATION_EXIT_DELAY
def get_churn_limit(state: BeaconState) -> int:
"""
Return the churn limit based on the active validator count.
"""
return max(
MIN_PER_EPOCH_CHURN_LIMIT,
len(get_active_validator_indices(state, get_current_epoch(state))) // CHURN_LIMIT_QUOTIENT
)
bls_verify
is a function for verifying a BLS signature, defined in the BLS Signature spec.
bls_verify_multiple
is a function for verifying a BLS signature constructed from multiple messages, defined in the BLS Signature spec.
bls_aggregate_pubkeys
is a function for aggregating multiple BLS public keys into a single aggregate key, defined in the BLS Signature spec.
Note: All functions in this section mutate state
.
def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:
"""
Initiate the exit of the validator of the given ``index``.
"""
# Return if validator already initiated exit
validator = state.validator_registry[index]
if validator.exit_epoch != FAR_FUTURE_EPOCH:
return
# Compute exit queue epoch
exit_epochs = [v.exit_epoch for v in state.validator_registry if v.exit_epoch != FAR_FUTURE_EPOCH]
exit_queue_epoch = max(exit_epochs + [get_delayed_activation_exit_epoch(get_current_epoch(state))])
exit_queue_churn = len([v for v in state.validator_registry if v.exit_epoch == exit_queue_epoch])
if exit_queue_churn >= get_churn_limit(state):
exit_queue_epoch += 1
# Set validator exit epoch and withdrawable epoch
validator.exit_epoch = exit_queue_epoch
validator.withdrawable_epoch = validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY
def slash_validator(state: BeaconState,
slashed_index: ValidatorIndex,
whistleblower_index: ValidatorIndex=None) -> None:
"""
Slash the validator with index ``slashed_index``.
"""
current_epoch = get_current_epoch(state)
initiate_validator_exit(state, slashed_index)
state.validator_registry[slashed_index].slashed = True
state.validator_registry[slashed_index].withdrawable_epoch = current_epoch + LATEST_SLASHED_EXIT_LENGTH
slashed_balance = state.validator_registry[slashed_index].effective_balance
state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH] += slashed_balance
proposer_index = get_beacon_proposer_index(state)
if whistleblower_index is None:
whistleblower_index = proposer_index
whistleblowing_reward = slashed_balance // WHISTLEBLOWING_REWARD_QUOTIENT
proposer_reward = whistleblowing_reward // PROPOSER_REWARD_QUOTIENT
increase_balance(state, proposer_index, proposer_reward)
increase_balance(state, whistleblower_index, whistleblowing_reward - proposer_reward)
decrease_balance(state, slashed_index, whistleblowing_reward)
When enough deposits of size MAX_EFFECTIVE_BALANCE
have been made to the deposit contract an Eth2Genesis
log is emitted triggering the genesis of the beacon chain. Let:
eth2genesis
be the object corresponding toEth2Genesis
genesis_eth1_data
be object of typeEth1Data
wheregenesis_eth1_data.deposit_root = eth2genesis.deposit_root
genesis_eth1_data.deposit_count = eth2genesis.deposit_count
genesis_eth1_data.block_hash
is the hash of the Ethereum 1.0 block that emitted theEth2Genesis
log
genesis_deposits
be the object of typeList[Deposit]
with deposits ordered chronologically up to and including the deposit that triggered theEth2Genesis
log
Let genesis_state = get_genesis_beacon_state(genesis_deposits, eth2genesis.genesis_time, genesis_eth1_data)
.
def get_genesis_beacon_state(deposits: List[Deposit], genesis_time: int, genesis_eth1_data: Eth1Data) -> BeaconState:
state = BeaconState(
genesis_time=genesis_time,
latest_eth1_data=genesis_eth1_data,
latest_block_header=BeaconBlockHeader(body_root=hash_tree_root(BeaconBlockBody())),
)
# Process genesis deposits
for deposit in deposits:
process_deposit(state, deposit)
# Process genesis activations
for validator in state.validator_registry:
if validator.effective_balance >= MAX_EFFECTIVE_BALANCE:
validator.activation_eligibility_epoch = GENESIS_EPOCH
validator.activation_epoch = GENESIS_EPOCH
# Populate latest_active_index_roots
genesis_active_index_root = hash_tree_root(get_active_validator_indices(state, GENESIS_EPOCH))
for index in range(LATEST_ACTIVE_INDEX_ROOTS_LENGTH):
state.latest_active_index_roots[index] = genesis_active_index_root
return state
Let genesis_block = BeaconBlock(state_root=hash_tree_root(genesis_state))
.
The post-state corresponding to a pre-state state
and a block block
is defined as state_transition(state, block)
. State transitions that trigger an unhandled excpetion (e.g. a failed assert
or an out-of-range list access) are considered invalid.
def state_transition(state: BeaconState, block: BeaconBlock, validate_state_root: bool=False) -> BeaconState:
# Process slots (including those with no blocks) since block
process_slots(state, block.slot)
# Process block
process_block(state, block)
# Validate state root (`validate_state_root == True` in production)
if validate_state_root:
assert block.state_root == hash_tree_root(state)
# Return post-state
return state
def process_slots(state: BeaconState, slot: Slot) -> None:
assert state.slot <= slot
while state.slot < slot:
process_slot(state)
# Process epoch on the first slot of the next epoch
if (state.slot + 1) % SLOTS_PER_EPOCH == 0:
process_epoch(state)
state.slot += 1
def process_slot(state: BeaconState) -> None:
# Cache state root
previous_state_root = hash_tree_root(state)
state.latest_state_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_state_root
# Cache latest block header state root
if state.latest_block_header.state_root == ZERO_HASH:
state.latest_block_header.state_root = previous_state_root
# Cache block root
previous_block_root = signing_root(state.latest_block_header)
state.latest_block_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_block_root
Note: the # @LabelHere
lines below are placeholders to show that code will be inserted here in a future phase.
def process_epoch(state: BeaconState) -> None:
process_justification_and_finalization(state)
process_crosslinks(state)
process_rewards_and_penalties(state)
process_registry_updates(state)
# @process_reveal_deadlines
# @process_challenge_deadlines
process_slashings(state)
process_final_updates(state)
# @after_process_final_updates
def get_total_active_balance(state: BeaconState) -> Gwei:
return get_total_balance(state, get_active_validator_indices(state, get_current_epoch(state)))
def get_matching_source_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
assert epoch in (get_current_epoch(state), get_previous_epoch(state))
return state.current_epoch_attestations if epoch == get_current_epoch(state) else state.previous_epoch_attestations
def get_matching_target_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.target_root == get_block_root(state, epoch)
]
def get_matching_head_attestations(state: BeaconState, epoch: Epoch) -> List[PendingAttestation]:
return [
a for a in get_matching_source_attestations(state, epoch)
if a.data.beacon_block_root == get_block_root_at_slot(state, get_attestation_data_slot(state, a.data))
]
def get_unslashed_attesting_indices(state: BeaconState,
attestations: List[PendingAttestation]) -> List[ValidatorIndex]:
output = set()
for a in attestations:
output = output.union(get_attesting_indices(state, a.data, a.aggregation_bitfield))
return sorted(filter(lambda index: not state.validator_registry[index].slashed, list(output)))
def get_attesting_balance(state: BeaconState, attestations: List[PendingAttestation]) -> Gwei:
return get_total_balance(state, get_unslashed_attesting_indices(state, attestations))
def get_winning_crosslink_and_attesting_indices(state: BeaconState,
epoch: Epoch,
shard: Shard) -> Tuple[Crosslink, List[ValidatorIndex]]:
attestations = [a for a in get_matching_source_attestations(state, epoch) if a.data.crosslink.shard == shard]
crosslinks = list(filter(
lambda c: hash_tree_root(state.current_crosslinks[shard]) in (c.parent_root, hash_tree_root(c)),
[a.data.crosslink for a in attestations]
))
# Winning crosslink has the crosslink data root with the most balance voting for it (ties broken lexicographically)
winning_crosslink = max(crosslinks, key=lambda c: (
get_attesting_balance(state, [a for a in attestations if a.data.crosslink == c]), c.data_root
), default=Crosslink())
winning_attestations = [a for a in attestations if a.data.crosslink == winning_crosslink]
return winning_crosslink, get_unslashed_attesting_indices(state, winning_attestations)
def process_justification_and_finalization(state: BeaconState) -> None:
if get_current_epoch(state) <= GENESIS_EPOCH + 1:
return
previous_epoch = get_previous_epoch(state)
current_epoch = get_current_epoch(state)
old_previous_justified_epoch = state.previous_justified_epoch
old_current_justified_epoch = state.current_justified_epoch
# Process justifications
state.previous_justified_epoch = state.current_justified_epoch
state.previous_justified_root = state.current_justified_root
state.justification_bitfield = (state.justification_bitfield << 1) % 2**64
previous_epoch_matching_target_balance = get_attesting_balance(
state, get_matching_target_attestations(state, previous_epoch)
)
if previous_epoch_matching_target_balance * 3 >= get_total_active_balance(state) * 2:
state.current_justified_epoch = previous_epoch
state.current_justified_root = get_block_root(state, state.current_justified_epoch)
state.justification_bitfield |= (1 << 1)
current_epoch_matching_target_balance = get_attesting_balance(
state, get_matching_target_attestations(state, current_epoch)
)
if current_epoch_matching_target_balance * 3 >= get_total_active_balance(state) * 2:
state.current_justified_epoch = current_epoch
state.current_justified_root = get_block_root(state, state.current_justified_epoch)
state.justification_bitfield |= (1 << 0)
# Process finalizations
bitfield = state.justification_bitfield
# The 2nd/3rd/4th most recent epochs are justified, the 2nd using the 4th as source
if (bitfield >> 1) % 8 == 0b111 and old_previous_justified_epoch + 3 == current_epoch:
state.finalized_epoch = old_previous_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 2nd/3rd most recent epochs are justified, the 2nd using the 3rd as source
if (bitfield >> 1) % 4 == 0b11 and old_previous_justified_epoch + 2 == current_epoch:
state.finalized_epoch = old_previous_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 1st/2nd/3rd most recent epochs are justified, the 1st using the 3rd as source
if (bitfield >> 0) % 8 == 0b111 and old_current_justified_epoch + 2 == current_epoch:
state.finalized_epoch = old_current_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
# The 1st/2nd most recent epochs are justified, the 1st using the 2nd as source
if (bitfield >> 0) % 4 == 0b11 and old_current_justified_epoch + 1 == current_epoch:
state.finalized_epoch = old_current_justified_epoch
state.finalized_root = get_block_root(state, state.finalized_epoch)
def process_crosslinks(state: BeaconState) -> None:
state.previous_crosslinks = [c for c in state.current_crosslinks]
for epoch in (get_previous_epoch(state), get_current_epoch(state)):
for offset in range(get_epoch_committee_count(state, epoch)):
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
crosslink_committee = get_crosslink_committee(state, epoch, shard)
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
if 3 * get_total_balance(state, attesting_indices) >= 2 * get_total_balance(state, crosslink_committee):
state.current_crosslinks[shard] = winning_crosslink
def get_base_reward(state: BeaconState, index: ValidatorIndex) -> Gwei:
total_balance = get_total_active_balance(state)
effective_balance = state.validator_registry[index].effective_balance
return effective_balance * BASE_REWARD_FACTOR // integer_squareroot(total_balance) // BASE_REWARDS_PER_EPOCH
def get_attestation_deltas(state: BeaconState) -> Tuple[List[Gwei], List[Gwei]]:
previous_epoch = get_previous_epoch(state)
total_balance = get_total_active_balance(state)
rewards = [0 for _ in range(len(state.validator_registry))]
penalties = [0 for _ in range(len(state.validator_registry))]
eligible_validator_indices = [
index for index, v in enumerate(state.validator_registry)
if is_active_validator(v, previous_epoch) or (v.slashed and previous_epoch + 1 < v.withdrawable_epoch)
]
# Micro-incentives for matching FFG source, FFG target, and head
matching_source_attestations = get_matching_source_attestations(state, previous_epoch)
matching_target_attestations = get_matching_target_attestations(state, previous_epoch)
matching_head_attestations = get_matching_head_attestations(state, previous_epoch)
for attestations in (matching_source_attestations, matching_target_attestations, matching_head_attestations):
unslashed_attesting_indices = get_unslashed_attesting_indices(state, attestations)
attesting_balance = get_total_balance(state, unslashed_attesting_indices)
for index in eligible_validator_indices:
if index in unslashed_attesting_indices:
rewards[index] += get_base_reward(state, index) * attesting_balance // total_balance
else:
penalties[index] += get_base_reward(state, index)
# Proposer and inclusion delay micro-rewards
for index in get_unslashed_attesting_indices(state, matching_source_attestations):
attestation = min([
a for a in matching_source_attestations
if index in get_attesting_indices(state, a.data, a.aggregation_bitfield)
], key=lambda a: a.inclusion_delay)
rewards[attestation.proposer_index] += get_base_reward(state, index) // PROPOSER_REWARD_QUOTIENT
rewards[index] += get_base_reward(state, index) * MIN_ATTESTATION_INCLUSION_DELAY // attestation.inclusion_delay
# Inactivity penalty
finality_delay = previous_epoch - state.finalized_epoch
if finality_delay > MIN_EPOCHS_TO_INACTIVITY_PENALTY:
matching_target_attesting_indices = get_unslashed_attesting_indices(state, matching_target_attestations)
for index in eligible_validator_indices:
penalties[index] += BASE_REWARDS_PER_EPOCH * get_base_reward(state, index)
if index not in matching_target_attesting_indices:
penalties[index] += (
state.validator_registry[index].effective_balance * finality_delay // INACTIVITY_PENALTY_QUOTIENT
)
return rewards, penalties
def get_crosslink_deltas(state: BeaconState) -> Tuple[List[Gwei], List[Gwei]]:
rewards = [0 for index in range(len(state.validator_registry))]
penalties = [0 for index in range(len(state.validator_registry))]
epoch = get_previous_epoch(state)
for offset in range(get_epoch_committee_count(state, epoch)):
shard = (get_epoch_start_shard(state, epoch) + offset) % SHARD_COUNT
crosslink_committee = get_crosslink_committee(state, epoch, shard)
winning_crosslink, attesting_indices = get_winning_crosslink_and_attesting_indices(state, epoch, shard)
attesting_balance = get_total_balance(state, attesting_indices)
committee_balance = get_total_balance(state, crosslink_committee)
for index in crosslink_committee:
base_reward = get_base_reward(state, index)
if index in attesting_indices:
rewards[index] += base_reward * attesting_balance // committee_balance
else:
penalties[index] += base_reward
return rewards, penalties
def process_rewards_and_penalties(state: BeaconState) -> None:
if get_current_epoch(state) == GENESIS_EPOCH:
return
rewards1, penalties1 = get_attestation_deltas(state)
rewards2, penalties2 = get_crosslink_deltas(state)
for i in range(len(state.validator_registry)):
increase_balance(state, i, rewards1[i] + rewards2[i])
decrease_balance(state, i, penalties1[i] + penalties2[i])
def process_registry_updates(state: BeaconState) -> None:
# Process activation eligibility and ejections
for index, validator in enumerate(state.validator_registry):
if (
validator.activation_eligibility_epoch == FAR_FUTURE_EPOCH and
validator.effective_balance >= MAX_EFFECTIVE_BALANCE
):
validator.activation_eligibility_epoch = get_current_epoch(state)
if is_active_validator(validator, get_current_epoch(state)) and validator.effective_balance <= EJECTION_BALANCE:
initiate_validator_exit(state, index)
# Queue validators eligible for activation and not dequeued for activation prior to finalized epoch
activation_queue = sorted([
index for index, validator in enumerate(state.validator_registry) if
validator.activation_eligibility_epoch != FAR_FUTURE_EPOCH and
validator.activation_epoch >= get_delayed_activation_exit_epoch(state.finalized_epoch)
], key=lambda index: state.validator_registry[index].activation_eligibility_epoch)
# Dequeued validators for activation up to churn limit (without resetting activation epoch)
for index in activation_queue[:get_churn_limit(state)]:
validator = state.validator_registry[index]
if validator.activation_epoch == FAR_FUTURE_EPOCH:
validator.activation_epoch = get_delayed_activation_exit_epoch(get_current_epoch(state))
def process_slashings(state: BeaconState) -> None:
current_epoch = get_current_epoch(state)
total_balance = get_total_active_balance(state)
# Compute slashed balances in the current epoch
total_at_start = state.latest_slashed_balances[(current_epoch + 1) % LATEST_SLASHED_EXIT_LENGTH]
total_at_end = state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH]
total_penalties = total_at_end - total_at_start
for index, validator in enumerate(state.validator_registry):
if validator.slashed and current_epoch == validator.withdrawable_epoch - LATEST_SLASHED_EXIT_LENGTH // 2:
penalty = max(
validator.effective_balance * min(total_penalties * 3, total_balance) // total_balance,
validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT
)
decrease_balance(state, index, penalty)
def process_final_updates(state: BeaconState) -> None:
current_epoch = get_current_epoch(state)
next_epoch = current_epoch + 1
# Reset eth1 data votes
if (state.slot + 1) % SLOTS_PER_ETH1_VOTING_PERIOD == 0:
state.eth1_data_votes = []
# Update effective balances with hysteresis
for index, validator in enumerate(state.validator_registry):
balance = state.balances[index]
HALF_INCREMENT = EFFECTIVE_BALANCE_INCREMENT // 2
if balance < validator.effective_balance or validator.effective_balance + 3 * HALF_INCREMENT < balance:
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
# Update start shard
state.latest_start_shard = (state.latest_start_shard + get_shard_delta(state, current_epoch)) % SHARD_COUNT
# Set active index root
index_root_position = (next_epoch + ACTIVATION_EXIT_DELAY) % LATEST_ACTIVE_INDEX_ROOTS_LENGTH
state.latest_active_index_roots[index_root_position] = hash_tree_root(
get_active_validator_indices(state, next_epoch + ACTIVATION_EXIT_DELAY)
)
# Set total slashed balances
state.latest_slashed_balances[next_epoch % LATEST_SLASHED_EXIT_LENGTH] = (
state.latest_slashed_balances[current_epoch % LATEST_SLASHED_EXIT_LENGTH]
)
# Set randao mix
state.latest_randao_mixes[next_epoch % LATEST_RANDAO_MIXES_LENGTH] = get_randao_mix(state, current_epoch)
# Set historical root accumulator
if next_epoch % (SLOTS_PER_HISTORICAL_ROOT // SLOTS_PER_EPOCH) == 0:
historical_batch = HistoricalBatch(
block_roots=state.latest_block_roots,
state_roots=state.latest_state_roots,
)
state.historical_roots.append(hash_tree_root(historical_batch))
# Rotate current/previous epoch attestations
state.previous_epoch_attestations = state.current_epoch_attestations
state.current_epoch_attestations = []
def process_block(state: BeaconState, block: BeaconBlock) -> None:
process_block_header(state, block)
process_randao(state, block.body)
process_eth1_data(state, block.body)
process_operations(state, block.body)
def process_block_header(state: BeaconState, block: BeaconBlock) -> None:
# Verify that the slots match
assert block.slot == state.slot
# Verify that the parent matches
assert block.parent_root == signing_root(state.latest_block_header)
# Save current block as the new latest block
state.latest_block_header = BeaconBlockHeader(
slot=block.slot,
parent_root=block.parent_root,
body_root=hash_tree_root(block.body),
)
# Verify proposer is not slashed
proposer = state.validator_registry[get_beacon_proposer_index(state)]
assert not proposer.slashed
# Verify proposer signature
assert bls_verify(proposer.pubkey, signing_root(block), block.signature, get_domain(state, DOMAIN_BEACON_PROPOSER))
def process_randao(state: BeaconState, body: BeaconBlockBody) -> None:
proposer = state.validator_registry[get_beacon_proposer_index(state)]
# Verify that the provided randao value is valid
assert bls_verify(
proposer.pubkey,
hash_tree_root(get_current_epoch(state)),
body.randao_reveal,
get_domain(state, DOMAIN_RANDAO),
)
# Mix it in
state.latest_randao_mixes[get_current_epoch(state) % LATEST_RANDAO_MIXES_LENGTH] = (
xor(get_randao_mix(state, get_current_epoch(state)),
hash(body.randao_reveal))
)
def process_eth1_data(state: BeaconState, body: BeaconBlockBody) -> None:
state.eth1_data_votes.append(body.eth1_data)
if state.eth1_data_votes.count(body.eth1_data) * 2 > SLOTS_PER_ETH1_VOTING_PERIOD:
state.latest_eth1_data = body.eth1_data
def process_operations(state: BeaconState, body: BeaconBlockBody) -> None:
# Verify that outstanding deposits are processed up to the maximum number of deposits
assert len(body.deposits) == min(MAX_DEPOSITS, state.latest_eth1_data.deposit_count - state.deposit_index)
# Verify that there are no duplicate transfers
assert len(body.transfers) == len(set(body.transfers))
for operations, max_operations, function in (
(body.proposer_slashings, MAX_PROPOSER_SLASHINGS, process_proposer_slashing),
(body.attester_slashings, MAX_ATTESTER_SLASHINGS, process_attester_slashing),
(body.attestations, MAX_ATTESTATIONS, process_attestation),
(body.deposits, MAX_DEPOSITS, process_deposit),
(body.voluntary_exits, MAX_VOLUNTARY_EXITS, process_voluntary_exit),
(body.transfers, MAX_TRANSFERS, process_transfer),
):
assert len(operations) <= max_operations
for operation in operations:
function(state, operation)
def process_proposer_slashing(state: BeaconState, proposer_slashing: ProposerSlashing) -> None:
"""
Process ``ProposerSlashing`` operation.
"""
proposer = state.validator_registry[proposer_slashing.proposer_index]
# Verify that the epoch is the same
assert slot_to_epoch(proposer_slashing.header_1.slot) == slot_to_epoch(proposer_slashing.header_2.slot)
# But the headers are different
assert proposer_slashing.header_1 != proposer_slashing.header_2
# Check proposer is slashable
assert is_slashable_validator(proposer, get_current_epoch(state))
# Signatures are valid
for header in (proposer_slashing.header_1, proposer_slashing.header_2):
domain = get_domain(state, DOMAIN_BEACON_PROPOSER, slot_to_epoch(header.slot))
assert bls_verify(proposer.pubkey, signing_root(header), header.signature, domain)
slash_validator(state, proposer_slashing.proposer_index)
def process_attester_slashing(state: BeaconState, attester_slashing: AttesterSlashing) -> None:
"""
Process ``AttesterSlashing`` operation.
"""
attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2
assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
validate_indexed_attestation(state, attestation_1)
validate_indexed_attestation(state, attestation_2)
slashed_any = False
attesting_indices_1 = attestation_1.custody_bit_0_indices + attestation_1.custody_bit_1_indices
attesting_indices_2 = attestation_2.custody_bit_0_indices + attestation_2.custody_bit_1_indices
for index in sorted(set(attesting_indices_1).intersection(attesting_indices_2)):
if is_slashable_validator(state.validator_registry[index], get_current_epoch(state)):
slash_validator(state, index)
slashed_any = True
assert slashed_any
def process_attestation(state: BeaconState, attestation: Attestation) -> None:
"""
Process ``Attestation`` operation.
"""
data = attestation.data
attestation_slot = get_attestation_data_slot(state, data)
assert attestation_slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot <= attestation_slot + SLOTS_PER_EPOCH
pending_attestation = PendingAttestation(
data=data,
aggregation_bitfield=attestation.aggregation_bitfield,
inclusion_delay=state.slot - attestation_slot,
proposer_index=get_beacon_proposer_index(state),
)
assert data.target_epoch in (get_previous_epoch(state), get_current_epoch(state))
if data.target_epoch == get_current_epoch(state):
ffg_data = (state.current_justified_epoch, state.current_justified_root, get_current_epoch(state))
parent_crosslink = state.current_crosslinks[data.crosslink.shard]
state.current_epoch_attestations.append(pending_attestation)
else:
ffg_data = (state.previous_justified_epoch, state.previous_justified_root, get_previous_epoch(state))
parent_crosslink = state.previous_crosslinks[data.crosslink.shard]
state.previous_epoch_attestations.append(pending_attestation)
# Check FFG data, crosslink data, and signature
assert ffg_data == (data.source_epoch, data.source_root, data.target_epoch)
assert data.crosslink.start_epoch == parent_crosslink.end_epoch
assert data.crosslink.end_epoch == min(data.target_epoch, parent_crosslink.end_epoch + MAX_EPOCHS_PER_CROSSLINK)
assert data.crosslink.parent_root == hash_tree_root(parent_crosslink)
assert data.crosslink.data_root == ZERO_HASH # [to be removed in phase 1]
validate_indexed_attestation(state, convert_to_indexed(state, attestation))
def process_deposit(state: BeaconState, deposit: Deposit) -> None:
"""
Process an Eth1 deposit, registering a validator or increasing its balance.
"""
# Verify the Merkle branch
assert verify_merkle_branch(
leaf=hash_tree_root(deposit.data),
proof=deposit.proof,
depth=DEPOSIT_CONTRACT_TREE_DEPTH,
index=state.deposit_index,
root=state.latest_eth1_data.deposit_root,
)
# Deposits must be processed in order
state.deposit_index += 1
pubkey = deposit.data.pubkey
amount = deposit.data.amount
validator_pubkeys = [v.pubkey for v in state.validator_registry]
if pubkey not in validator_pubkeys:
# Verify the deposit signature (proof of possession).
# Invalid signatures are allowed by the deposit contract,
# and hence included on-chain, but must not be processed.
# Note: deposits are valid across forks, hence the deposit domain is retrieved directly from `bls_domain`
if not bls_verify(
pubkey, signing_root(deposit.data), deposit.data.signature, bls_domain(DOMAIN_DEPOSIT)
):
return
# Add validator and balance entries
state.validator_registry.append(Validator(
pubkey=pubkey,
withdrawal_credentials=deposit.data.withdrawal_credentials,
activation_eligibility_epoch=FAR_FUTURE_EPOCH,
activation_epoch=FAR_FUTURE_EPOCH,
exit_epoch=FAR_FUTURE_EPOCH,
withdrawable_epoch=FAR_FUTURE_EPOCH,
effective_balance=min(amount - amount % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)
))
state.balances.append(amount)
else:
# Increase balance by deposit amount
index = validator_pubkeys.index(pubkey)
increase_balance(state, index, amount)
def process_voluntary_exit(state: BeaconState, exit: VoluntaryExit) -> None:
"""
Process ``VoluntaryExit`` operation.
"""
validator = state.validator_registry[exit.validator_index]
# Verify the validator is active
assert is_active_validator(validator, get_current_epoch(state))
# Verify the validator has not yet exited
assert validator.exit_epoch == FAR_FUTURE_EPOCH
# Exits must specify an epoch when they become valid; they are not valid before then
assert get_current_epoch(state) >= exit.epoch
# Verify the validator has been active long enough
assert get_current_epoch(state) >= validator.activation_epoch + PERSISTENT_COMMITTEE_PERIOD
# Verify signature
domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, exit.epoch)
assert bls_verify(validator.pubkey, signing_root(exit), exit.signature, domain)
# Initiate exit
initiate_validator_exit(state, exit.validator_index)
def process_transfer(state: BeaconState, transfer: Transfer) -> None:
"""
Process ``Transfer`` operation.
"""
# Verify the amount and fee are not individually too big (for anti-overflow purposes)
assert state.balances[transfer.sender] >= max(transfer.amount, transfer.fee)
# A transfer is valid in only one slot
assert state.slot == transfer.slot
# Sender must be not yet eligible for activation, withdrawn, or transfer balance over MAX_EFFECTIVE_BALANCE
assert (
state.validator_registry[transfer.sender].activation_eligibility_epoch == FAR_FUTURE_EPOCH or
get_current_epoch(state) >= state.validator_registry[transfer.sender].withdrawable_epoch or
transfer.amount + transfer.fee + MAX_EFFECTIVE_BALANCE <= state.balances[transfer.sender]
)
# Verify that the pubkey is valid
assert (
state.validator_registry[transfer.sender].withdrawal_credentials ==
int_to_bytes(BLS_WITHDRAWAL_PREFIX, length=1) + hash(transfer.pubkey)[1:]
)
# Verify that the signature is valid
assert bls_verify(transfer.pubkey, signing_root(transfer), transfer.signature, get_domain(state, DOMAIN_TRANSFER))
# Process the transfer
decrease_balance(state, transfer.sender, transfer.amount + transfer.fee)
increase_balance(state, transfer.recipient, transfer.amount)
increase_balance(state, get_beacon_proposer_index(state), transfer.fee)
# Verify balances are not dust
assert not (0 < state.balances[transfer.sender] < MIN_DEPOSIT_AMOUNT)
assert not (0 < state.balances[transfer.recipient] < MIN_DEPOSIT_AMOUNT)