- Introduction
- Custom types
- Cryptographic types
- Constants
- Preset
- Helper functions
This document specifies basic polynomial operations and KZG polynomial commitment operations that are essential for the implementation of the EIP-4844 feature in the Deneb specification. The implementations are not optimized for performance, but readability. All practical implementations should optimize the polynomial operations.
Functions flagged as "Public method" MUST be provided by the underlying KZG library as public functions. All other functions are private functions used internally by the KZG library.
Public functions MUST accept raw bytes as input and perform the required cryptographic normalization before invoking any internal functions.
Name | SSZ equivalent | Description |
---|---|---|
G1Point |
Bytes48 |
|
G2Point |
Bytes96 |
|
KZGCommitment |
Bytes48 |
Validation: Perform BLS standard's "KeyValidate" check but do allow the identity point |
KZGProof |
Bytes48 |
Same as for KZGCommitment |
Blob |
ByteVector[BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB] |
A basic data blob |
Name | SSZ equivalent | Description |
---|---|---|
BLSFieldElement |
uint256 |
A value in the finite field defined by BLS_MODULUS |
Polynomial |
Vector[BLSFieldElement, FIELD_ELEMENTS_PER_BLOB] |
A polynomial in evaluation form |
Name | Value | Notes |
---|---|---|
BLS_MODULUS |
52435875175126190479447740508185965837690552500527637822603658699938581184513 |
Scalar field modulus of BLS12-381 |
BYTES_PER_COMMITMENT |
uint64(48) |
The number of bytes in a KZG commitment |
BYTES_PER_PROOF |
uint64(48) |
The number of bytes in a KZG proof |
BYTES_PER_FIELD_ELEMENT |
uint64(32) |
Bytes used to encode a BLS scalar field element |
BYTES_PER_BLOB |
uint64(BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB) |
The number of bytes in a blob |
G1_POINT_AT_INFINITY |
Bytes48(b'\xc0' + b'\x00' * 47) |
Serialized form of the point at infinity on the G1 group |
KZG_ENDIANNESS |
'big' |
The endianness of the field elements including blobs |
PRIMITIVE_ROOT_OF_UNITY |
7 |
The primitive root of unity from which all roots of unity should be derived |
Name | Value |
---|---|
FIELD_ELEMENTS_PER_BLOB |
uint64(4096) |
FIAT_SHAMIR_PROTOCOL_DOMAIN |
b'FSBLOBVERIFY_V1_' |
RANDOM_CHALLENGE_KZG_BATCH_DOMAIN |
b'RCKZGBATCH___V1_' |
Name | Value |
---|---|
KZG_SETUP_G2_LENGTH |
65 |
KZG_SETUP_G1_MONOMIAL |
Vector[G1Point, FIELD_ELEMENTS_PER_BLOB] |
KZG_SETUP_G1_LAGRANGE |
Vector[G1Point, FIELD_ELEMENTS_PER_BLOB] |
KZG_SETUP_G2_MONOMIAL |
Vector[G2Point, KZG_SETUP_G2_LENGTH] |
All polynomials (which are always given in Lagrange form) should be interpreted as being in
bit-reversal permutation. In practice, clients can implement this by storing the lists
KZG_SETUP_G1_LAGRANGE
and roots of unity in bit-reversal permutation, so these functions only
have to be called once at startup.
def is_power_of_two(value: int) -> bool:
"""
Check if ``value`` is a power of two integer.
"""
return (value > 0) and (value & (value - 1) == 0)
def reverse_bits(n: int, order: int) -> int:
"""
Reverse the bit order of an integer ``n``.
"""
assert is_power_of_two(order)
# Convert n to binary with the same number of bits as "order" - 1, then reverse its bit order
return int(('{:0' + str(order.bit_length() - 1) + 'b}').format(n)[::-1], 2)
def bit_reversal_permutation(sequence: Sequence[T]) -> Sequence[T]:
"""
Return a copy with bit-reversed permutation. The permutation is an involution (inverts itself).
The input and output are a sequence of generic type ``T`` objects.
"""
return [sequence[reverse_bits(i, len(sequence))] for i in range(len(sequence))]
This function performs a multi-scalar multiplication between points
and integers
. points
can either be in G1 or G2.
def multi_exp(points: Sequence[TPoint],
integers: Sequence[uint64]) -> Sequence[TPoint]:
# pylint: disable=unused-argument
...
def hash_to_bls_field(data: bytes) -> BLSFieldElement:
"""
Hash ``data`` and convert the output to a BLS scalar field element.
The output is not uniform over the BLS field.
"""
hashed_data = hash(data)
return BLSFieldElement(int.from_bytes(hashed_data, KZG_ENDIANNESS) % BLS_MODULUS)
def bytes_to_bls_field(b: Bytes32) -> BLSFieldElement:
"""
Convert untrusted bytes to a trusted and validated BLS scalar field element.
This function does not accept inputs greater than the BLS modulus.
"""
field_element = int.from_bytes(b, KZG_ENDIANNESS)
assert field_element < BLS_MODULUS
return BLSFieldElement(field_element)
def bls_field_to_bytes(x: BLSFieldElement) -> Bytes32:
return int.to_bytes(int(x), 32, KZG_ENDIANNESS)
def validate_kzg_g1(b: Bytes48) -> None:
"""
Perform BLS validation required by the types `KZGProof` and `KZGCommitment`.
"""
if b == G1_POINT_AT_INFINITY:
return
assert bls.KeyValidate(b)
def bytes_to_kzg_commitment(b: Bytes48) -> KZGCommitment:
"""
Convert untrusted bytes into a trusted and validated KZGCommitment.
"""
validate_kzg_g1(b)
return KZGCommitment(b)
def bytes_to_kzg_proof(b: Bytes48) -> KZGProof:
"""
Convert untrusted bytes into a trusted and validated KZGProof.
"""
validate_kzg_g1(b)
return KZGProof(b)
def blob_to_polynomial(blob: Blob) -> Polynomial:
"""
Convert a blob to list of BLS field scalars.
"""
polynomial = Polynomial()
for i in range(FIELD_ELEMENTS_PER_BLOB):
value = bytes_to_bls_field(blob[i * BYTES_PER_FIELD_ELEMENT: (i + 1) * BYTES_PER_FIELD_ELEMENT])
polynomial[i] = value
return polynomial
def compute_challenge(blob: Blob, commitment: KZGCommitment) -> BLSFieldElement:
"""
Return the Fiat-Shamir challenge required by the rest of the protocol.
"""
# Append the degree of the polynomial as a domain separator
degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 16, KZG_ENDIANNESS)
data = FIAT_SHAMIR_PROTOCOL_DOMAIN + degree_poly
data += blob
data += commitment
# Transcript has been prepared: time to create the challenge
return hash_to_bls_field(data)
def g1_lincomb(points: Sequence[KZGCommitment], scalars: Sequence[BLSFieldElement]) -> KZGCommitment:
"""
BLS multiscalar multiplication in G1. This can be naively implemented using double-and-add.
"""
assert len(points) == len(scalars)
if len(points) == 0:
return bls.G1_to_bytes48(bls.Z1())
points_g1 = []
for point in points:
points_g1.append(bls.bytes48_to_G1(point))
result = bls.multi_exp(points_g1, scalars)
return KZGCommitment(bls.G1_to_bytes48(result))
def compute_powers(x: BLSFieldElement, n: uint64) -> Sequence[BLSFieldElement]:
"""
Return ``x`` to power of [0, n-1], if n > 0. When n==0, an empty array is returned.
"""
current_power = BLSFieldElement(1)
powers = []
for _ in range(n):
powers.append(current_power)
current_power = current_power * x
return powers
def compute_roots_of_unity(order: uint64) -> Sequence[BLSFieldElement]:
"""
Return roots of unity of ``order``.
"""
assert (BLS_MODULUS - 1) % int(order) == 0
root_of_unity = BLSFieldElement(pow(PRIMITIVE_ROOT_OF_UNITY, (BLS_MODULUS - 1) // int(order), BLS_MODULUS))
return compute_powers(root_of_unity, order)
def evaluate_polynomial_in_evaluation_form(polynomial: Polynomial, z: BLSFieldElement) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point ``z``.
- When ``z`` is in the domain, the evaluation can be found by indexing the polynomial at the
position that ``z`` is in the domain.
- When ``z`` is not in the domain, the barycentric formula is used:
f(z) = (z**WIDTH - 1) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i])
"""
width = len(polynomial)
assert width == FIELD_ELEMENTS_PER_BLOB
inverse_width = BLSFieldElement(width).inverse()
roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB))
# If we are asked to evaluate within the domain, we already know the answer
if z in roots_of_unity_brp:
eval_index = roots_of_unity_brp.index(z)
return polynomial[eval_index]
result = BLSFieldElement(0)
for i in range(width):
a = polynomial[i] * roots_of_unity_brp[i]
b = z - roots_of_unity_brp[i]
result += a / b
r = z.pow(BLSFieldElement(width)) - BLSFieldElement(1)
result = result * r * inverse_width
return result
KZG core functions. These are also defined in Deneb execution specs.
def blob_to_kzg_commitment(blob: Blob) -> KZGCommitment:
"""
Public method.
"""
assert len(blob) == BYTES_PER_BLOB
return g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), blob_to_polynomial(blob))
def verify_kzg_proof(commitment_bytes: Bytes48,
z_bytes: Bytes32,
y_bytes: Bytes32,
proof_bytes: Bytes48) -> bool:
"""
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
Receives inputs as bytes.
Public method.
"""
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT
assert len(y_bytes) == BYTES_PER_FIELD_ELEMENT
assert len(proof_bytes) == BYTES_PER_PROOF
return verify_kzg_proof_impl(bytes_to_kzg_commitment(commitment_bytes),
bytes_to_bls_field(z_bytes),
bytes_to_bls_field(y_bytes),
bytes_to_kzg_proof(proof_bytes))
def verify_kzg_proof_impl(commitment: KZGCommitment,
z: BLSFieldElement,
y: BLSFieldElement,
proof: KZGProof) -> bool:
"""
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
"""
# Verify: P - y = Q * (X - z)
X_minus_z = bls.add(
bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]),
bls.multiply(bls.G2(), -z),
)
P_minus_y = bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), -y))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2())],
[bls.bytes48_to_G1(proof), X_minus_z]
])
def verify_kzg_proof_batch(commitments: Sequence[KZGCommitment],
zs: Sequence[BLSFieldElement],
ys: Sequence[BLSFieldElement],
proofs: Sequence[KZGProof]) -> bool:
"""
Verify multiple KZG proofs efficiently.
"""
assert len(commitments) == len(zs) == len(ys) == len(proofs)
# Compute a random challenge. Note that it does not have to be computed from a hash,
# r just has to be random.
degree_poly = int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, KZG_ENDIANNESS)
num_commitments = int.to_bytes(len(commitments), 8, KZG_ENDIANNESS)
data = RANDOM_CHALLENGE_KZG_BATCH_DOMAIN + degree_poly + num_commitments
# Append all inputs to the transcript before we hash
for commitment, z, y, proof in zip(commitments, zs, ys, proofs):
data += commitment + bls_field_to_bytes(z) + bls_field_to_bytes(y) + proof
r = hash_to_bls_field(data)
r_powers = compute_powers(r, len(commitments))
# Verify: e(sum r^i proof_i, [s]) ==
# e(sum r^i (commitment_i - [y_i]) + sum r^i z_i proof_i, [1])
proof_lincomb = g1_lincomb(proofs, r_powers)
proof_z_lincomb = g1_lincomb(proofs, [z * r_power for z, r_power in zip(zs, r_powers)])
C_minus_ys = [bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), -y))
for commitment, y in zip(commitments, ys)]
C_minus_y_as_KZGCommitments = [KZGCommitment(bls.G1_to_bytes48(x)) for x in C_minus_ys]
C_minus_y_lincomb = g1_lincomb(C_minus_y_as_KZGCommitments, r_powers)
return bls.pairing_check([
[bls.bytes48_to_G1(proof_lincomb), bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]))],
[bls.add(bls.bytes48_to_G1(C_minus_y_lincomb), bls.bytes48_to_G1(proof_z_lincomb)), bls.G2()]
])
def compute_kzg_proof(blob: Blob, z_bytes: Bytes32) -> Tuple[KZGProof, Bytes32]:
"""
Compute KZG proof at point `z` for the polynomial represented by `blob`.
Do this by computing the quotient polynomial in evaluation form: q(x) = (p(x) - p(z)) / (x - z).
Public method.
"""
assert len(blob) == BYTES_PER_BLOB
assert len(z_bytes) == BYTES_PER_FIELD_ELEMENT
polynomial = blob_to_polynomial(blob)
proof, y = compute_kzg_proof_impl(polynomial, bytes_to_bls_field(z_bytes))
return proof, int(y).to_bytes(BYTES_PER_FIELD_ELEMENT, KZG_ENDIANNESS)
def compute_quotient_eval_within_domain(z: BLSFieldElement,
polynomial: Polynomial,
y: BLSFieldElement) -> BLSFieldElement:
"""
Given `y == p(z)` for a polynomial `p(x)`, compute `q(z)`: the KZG quotient polynomial evaluated at `z` for the
special case where `z` is in roots of unity.
For more details, read https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html section "Dividing
when one of the points is zero". The code below computes q(x_m) for the roots of unity special case.
"""
roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB))
result = BLSFieldElement(0)
for i, omega_i in enumerate(roots_of_unity_brp):
if omega_i == z: # skip the evaluation point in the sum
continue
f_i = polynomial[i] - y
numerator = f_i * omega_i
denominator = z * (z - omega_i)
result += numerator / denominator
return result
def compute_kzg_proof_impl(polynomial: Polynomial, z: BLSFieldElement) -> Tuple[KZGProof, BLSFieldElement]:
"""
Helper function for `compute_kzg_proof()` and `compute_blob_kzg_proof()`.
"""
roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB))
# For all x_i, compute p(x_i) - p(z)
y = evaluate_polynomial_in_evaluation_form(polynomial, z)
polynomial_shifted = [p - y for p in polynomial]
# For all x_i, compute (x_i - z)
denominator_poly = [x - z for x in roots_of_unity_brp]
# Compute the quotient polynomial directly in evaluation form
quotient_polynomial = [BLSFieldElement(0)] * FIELD_ELEMENTS_PER_BLOB
for i, (a, b) in enumerate(zip(polynomial_shifted, denominator_poly)):
if b == BLSFieldElement(0):
# The denominator is zero hence `z` is a root of unity: we must handle it as a special case
quotient_polynomial[i] = compute_quotient_eval_within_domain(roots_of_unity_brp[i], polynomial, y)
else:
# Compute: q(x_i) = (p(x_i) - p(z)) / (x_i - z).
quotient_polynomial[i] = a / b
return KZGProof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), quotient_polynomial)), y
def compute_blob_kzg_proof(blob: Blob, commitment_bytes: Bytes48) -> KZGProof:
"""
Given a blob, return the KZG proof that is used to verify it against the commitment.
This method does not verify that the commitment is correct with respect to `blob`.
Public method.
"""
assert len(blob) == BYTES_PER_BLOB
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
commitment = bytes_to_kzg_commitment(commitment_bytes)
polynomial = blob_to_polynomial(blob)
evaluation_challenge = compute_challenge(blob, commitment)
proof, _ = compute_kzg_proof_impl(polynomial, evaluation_challenge)
return proof
def verify_blob_kzg_proof(blob: Blob,
commitment_bytes: Bytes48,
proof_bytes: Bytes48) -> bool:
"""
Given a blob and a KZG proof, verify that the blob data corresponds to the provided commitment.
Public method.
"""
assert len(blob) == BYTES_PER_BLOB
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
assert len(proof_bytes) == BYTES_PER_PROOF
commitment = bytes_to_kzg_commitment(commitment_bytes)
polynomial = blob_to_polynomial(blob)
evaluation_challenge = compute_challenge(blob, commitment)
# Evaluate polynomial at `evaluation_challenge`
y = evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge)
# Verify proof
proof = bytes_to_kzg_proof(proof_bytes)
return verify_kzg_proof_impl(commitment, evaluation_challenge, y, proof)
def verify_blob_kzg_proof_batch(blobs: Sequence[Blob],
commitments_bytes: Sequence[Bytes48],
proofs_bytes: Sequence[Bytes48]) -> bool:
"""
Given a list of blobs and blob KZG proofs, verify that they correspond to the provided commitments.
Will return True if there are zero blobs/commitments/proofs.
Public method.
"""
assert len(blobs) == len(commitments_bytes) == len(proofs_bytes)
commitments, evaluation_challenges, ys, proofs = [], [], [], []
for blob, commitment_bytes, proof_bytes in zip(blobs, commitments_bytes, proofs_bytes):
assert len(blob) == BYTES_PER_BLOB
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
assert len(proof_bytes) == BYTES_PER_PROOF
commitment = bytes_to_kzg_commitment(commitment_bytes)
commitments.append(commitment)
polynomial = blob_to_polynomial(blob)
evaluation_challenge = compute_challenge(blob, commitment)
evaluation_challenges.append(evaluation_challenge)
ys.append(evaluate_polynomial_in_evaluation_form(polynomial, evaluation_challenge))
proofs.append(bytes_to_kzg_proof(proof_bytes))
return verify_kzg_proof_batch(commitments, evaluation_challenges, ys, proofs)